These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38738941)

  • 1. Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach.
    Ramezani Z; André V; Khizroev S
    Biointerphases; 2024 May; 19(3):. PubMed ID: 38738941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles.
    Zhang E; Abdel-Mottaleb M; Liang P; Navarrete B; Yildirim YA; Campos MA; Smith IT; Wang P; Yildirim B; Yang L; Chen S; Smith I; Lur G; Nguyen T; Jin X; Noga BR; Ganzer P; Khizroev S
    Brain Stimul; 2022; 15(6):1451-1462. PubMed ID: 36374738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles.
    Bok I; Haber I; Qu X; Hai A
    Sci Rep; 2022 May; 12(1):8386. PubMed ID: 35589877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling action potentials with magnetoelectric nanoparticles.
    Zhang E; Shotbolt M; Chang CY; Scott-Vandeusen A; Chen S; Liang P; Radu D; Khizroev S
    Brain Stimul; 2024; 17(5):1005-1017. PubMed ID: 39209064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetoelectric nanoparticles shape modulates their electrical output.
    Marrella A; Suarato G; Fiocchi S; Chiaramello E; Bonato M; Parazzini M; Ravazzani P
    Front Bioeng Biotechnol; 2023; 11():1219777. PubMed ID: 37691903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles.
    Smith IT; Zhang E; Yildirim YA; Campos MA; Abdel-Mottaleb M; Yildirim B; Ramezani Z; Andre VL; Scott-Vandeusen A; Liang P; Khizroev S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Mar; 15(2):e1849. PubMed ID: 36056752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Modeling of Magnetoelectric Nanoparticles for the Analysis of Spatially Selective Neural Stimulation.
    Kumari P; Wunderlich H; Milojkovic A; López JE; Fossati A; Jahanshahi A; Kozielski K
    Adv Healthc Mater; 2024 Sep; 13(24):e2302871. PubMed ID: 38262344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Entity Approach to Investigate Surface Charge Enhancement in Magnetoelectric Nanoparticles Induced by AC Magnetic Field Stimulation.
    Pandey P; Ghimire G; Garcia J; Rubfiaro A; Wang X; Tomitaka A; Nair M; Kaushik A; He J
    ACS Sens; 2021 Feb; 6(2):340-347. PubMed ID: 32449356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of suppression of sustained neuronal spiking under high-frequency stimulation.
    Pyragas K; Novičenko V; Tass PA
    Biol Cybern; 2013 Dec; 107(6):669-84. PubMed ID: 24146294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modeling of neuronal dynamics for systems analysis: application to neurons of the cardiorespiratory NTS in the rat.
    Schwaber JS; Graves EB; Paton JF
    Brain Res; 1993 Feb; 604(1-2):126-41. PubMed ID: 8457841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic responses of neurons in different states under magnetic field stimulation.
    Yang H; Wang H; Guo L; Xu G
    J Comput Neurosci; 2022 Feb; 50(1):109-120. PubMed ID: 34532810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiconductance silicon neuron with biologically matched dynamics.
    Simoni MF; Cymbalyuk GS; Sorensen ME; Calabrese RL; DeWeerth SP
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):342-54. PubMed ID: 14765707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hodgkin-Huxley heritage: from channels to circuits.
    Catterall WA; Raman IM; Robinson HP; Sejnowski TJ; Paulsen O
    J Neurosci; 2012 Oct; 32(41):14064-73. PubMed ID: 23055474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A continuum neuronal tissue model based on a two-compartmental representation of cells.
    Al Abed A; Lovell NH; Suaning GJ; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6543-6. PubMed ID: 24111241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Finite Element Simulations to Equivalent Circuit Models of Extracellular Neuronal Recording Systems Based on Planar and Mushroom Electrodes.
    Leva F; Verardo C; Palestri P; Selmi L
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1115-1126. PubMed ID: 37878426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural-electronic inhibition simulated with a neuron model implemented in SPICE.
    Szlavik RB; Bhuiyan AK; Carver A; Jenkins F
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):109-15. PubMed ID: 16562638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hodgkin-Huxley Neuron and FPAA Dynamics.
    Natarajan A; Hasler J
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):918-926. PubMed ID: 30010587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of magnetoelectric nanoparticles for non-invasive brain stimulation: a computational study.
    Fiocchi S; Chiaramello E; Marrella A; Bonato M; Parazzini M; Ravazzani P
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36075197
    [No Abstract]   [Full Text] [Related]  

  • 20. Neural Energy Supply-Consumption Properties Based on Hodgkin-Huxley Model.
    Wang Y; Wang R; Xu X
    Neural Plast; 2017; 2017():6207141. PubMed ID: 28316842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.