BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 38739004)

  • 1. TNF-α can promote membrane invasion by activating the MAPK/MMP9 signaling pathway through autocrine in bone-invasive pituitary adenoma.
    Wu X; Gong L; Li B; Bai J; Li C; Zhang Y; Zhu H
    CNS Neurosci Ther; 2024 May; 30(5):e14749. PubMed ID: 38739004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions and Mechanisms of Tumor Necrosis Factor-α and Noncoding RNAs in Bone-Invasive Pituitary Adenomas.
    Zhu H; Guo J; Shen Y; Dong W; Gao H; Miao Y; Li C; Zhang Y
    Clin Cancer Res; 2018 Nov; 24(22):5757-5766. PubMed ID: 29980532
    [No Abstract]   [Full Text] [Related]  

  • 3. ADAM12 induces EMT and promotes cell migration, invasion and proliferation in pituitary adenomas via EGFR/ERK signaling pathway.
    Wang J; Zhang Z; Li R; Mao F; Sun W; Chen J; Zhang H; Bartsch JW; Shu K; Lei T
    Biomed Pharmacother; 2018 Jan; 97():1066-1077. PubMed ID: 29136943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TNF-α-induced VEGF and MMP-9 expression promotes hemorrhagic transformation in pituitary adenomas.
    Xiao Z; Liu Q; Mao F; Wu J; Lei T
    Int J Mol Sci; 2011; 12(6):4165-79. PubMed ID: 21747731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ESR1 and its antagonist fulvestrant in pituitary adenomas.
    Gao H; Xue Y; Cao L; Liu Q; Liu C; Shan X; Wang H; Gu Y; Zhang Y
    Mol Cell Endocrinol; 2017 Mar; 443():32-41. PubMed ID: 28043824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LncRNA MEG8 promotes TNF-α expression by sponging miR-454-3p in bone-invasive pituitary adenomas.
    Zhu HB; Li B; Guo J; Miao YZ; Shen YT; Zhang YZ; Zhao P; Li CZ
    Aging (Albany NY); 2021 May; 13(10):14342-14354. PubMed ID: 34016788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative proteomics and transcriptomics revealed that activation of the IL-6R/JAK2/STAT3/MMP9 signaling pathway is correlated with invasion of pituitary null cell adenomas.
    Feng J; Yu SY; Li CZ; Li ZY; Zhang YZ
    Mol Cell Endocrinol; 2016 Nov; 436():195-203. PubMed ID: 27465831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lncRNA HULC knockdown on rat secreting pituitary adenoma GH3 cells.
    Rui QH; Ma JB; Liao YF; Dai JH; Cai ZY
    Braz J Med Biol Res; 2019; 52(4):e7728. PubMed ID: 30994730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IL-1β-induced activation of p38 promotes metastasis in gastric adenocarcinoma via upregulation of AP-1/c-fos, MMP2 and MMP9.
    Huang Q; Lan F; Wang X; Yu Y; Ouyang X; Zheng F; Han J; Lin Y; Xie Y; Xie F; Liu W; Yang X; Wang H; Dong L; Wang L; Tan J
    Mol Cancer; 2014 Jan; 13():18. PubMed ID: 24479681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CCNB1 affects cavernous sinus invasion in pituitary adenomas through the epithelial-mesenchymal transition.
    Li B; Cheng J; Wang H; Zhao S; Zhu H; Li C; Zhang Y; Zhao P
    J Transl Med; 2019 Oct; 17(1):336. PubMed ID: 31585531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate dehydrogenase A promotes the invasion and proliferation of pituitary adenoma.
    An J; Zhang Y; He J; Zang Z; Zhou Z; Pei X; Zheng X; Zhang W; Yang H; Li S
    Sci Rep; 2017 Jul; 7(1):4734. PubMed ID: 28680051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-200b-3p accelerates progression of pituitary adenomas by negatively regulating expression of RECK.
    Wang X; Jia Y; Li Q; Yang Q; Liu Y; Wei B; Niu X; Zhang Y; Luo X; Zhao Z; Wang P
    Oncol Res; 2024; 32(5):933-941. PubMed ID: 38686051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of Oestrogenic Inhibition of the Nuclear Factor-κB Pathway in Somatolactotroph Tumour Cells.
    Eijo G; Gottardo MF; Jaita G; Magri ML; Moreno Ayala M; Zárate S; Candolfi M; Pisera D; Seilicovich A
    J Neuroendocrinol; 2015 Sep; 27(9):692-701. PubMed ID: 26052658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Hypoxia on DDR1 Expression in Pituitary Adenomas.
    Li S; Zhang Z; Xue J; Guo X; Liang S; Liu A
    Med Sci Monit; 2015 Aug; 21():2433-8. PubMed ID: 26286316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery.
    Meij BP; Lopes MB; Ellegala DB; Alden TD; Laws ER
    J Neurosurg; 2002 Feb; 96(2):195-208. PubMed ID: 11838791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of anti-estrogens on cell invasion and survival in pituitary adenoma cells: A systematic study.
    Hannen R; Steffani M; Voellger B; Carl B; Wang J; Bartsch JW; Nimsky C
    J Steroid Biochem Mol Biol; 2019 Mar; 187():88-96. PubMed ID: 30439415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silencing of HEPN1 is responsible for the aggressive biological behavior of pituitary somatotroph adenomas.
    Peng H; Fan J; Wu J; Lang J; Wang J; Liu H; Zhao S; Liao J
    Cell Physiol Biochem; 2013; 31(2-3):379-88. PubMed ID: 23548416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AFAP1-AS1 Promotes Proliferation of Pituitary Adenoma Cells through miR-103a-3p to Activate PI3K/AKT Signaling Pathway.
    Tang H; Zhu D; Zhang G; Luo X; Xie W
    World Neurosurg; 2019 Oct; 130():e888-e898. PubMed ID: 31299308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fascin promotes the invasion of pituitary adenoma through partial dependence on epithelial-mesenchymal transition.
    You H; Xu J; Qin X; Qian G; Wang Y; Chen F; Shen X; Zhao D; Liu Q
    J Mol Histol; 2021 Aug; 52(4):823-838. PubMed ID: 34097178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RASSF10 regulates bone invasion of growth hormone-secreting adenomas via exosomes.
    Wang T; Liu H; Ji Z; Cheng Y; Du Y; Liu H; Liao J; Peng H
    Biochem Biophys Res Commun; 2020 Jun; 527(3):603-610. PubMed ID: 32423821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.