These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38739105)

  • 1. Piezoelectric Energy Harvester Technologies: Synthesis, Mechanisms, and Multifunctional Applications.
    He Q; Briscoe J
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29491-29520. PubMed ID: 38739105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable piezoelectric nanocomposite generator.
    Park KI; Jeong CK; Kim NK; Lee KJ
    Nano Converg; 2016; 3(1):12. PubMed ID: 28191422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.
    Wu H; Huang Y; Xu F; Duan Y; Yin Z
    Adv Mater; 2016 Dec; 28(45):9881-9919. PubMed ID: 27677428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composites, Fabrication and Application of Polyvinylidene Fluoride for Flexible Electromechanical Devices: A Review.
    Guo S; Duan X; Xie M; Aw KC; Xue Q
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33287450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.
    Fan FR; Tang W; Wang ZL
    Adv Mater; 2016 Jun; 28(22):4283-305. PubMed ID: 26748684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties.
    Mohammadpourfazeli S; Arash S; Ansari A; Yang S; Mallick K; Bagherzadeh R
    RSC Adv; 2022 Dec; 13(1):370-387. PubMed ID: 36683768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances of polymer-based piezoelectric composites for biomedical applications.
    Mokhtari F; Azimi B; Salehi M; Hashemikia S; Danti S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104669. PubMed ID: 34280866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials.
    Mahapatra SD; Mohapatra PC; Aria AI; Christie G; Mishra YK; Hofmann S; Thakur VK
    Adv Sci (Weinh); 2021 Sep; 8(17):e2100864. PubMed ID: 34254467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks.
    Gljušćić P; Zelenika S
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures.
    Fernandez SV; Cai F; Chen S; Suh E; Tiepelt J; McIntosh R; Marcus C; Acosta D; Mejorado D; Dagdeviren C
    ACS Biomater Sci Eng; 2023 May; 9(5):2070-2086. PubMed ID: 34735770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration.
    Duque M; Leon-Salguero E; Sacristán J; Esteve J; Murillo G
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harvesting Inertial Energy and Powering Wearable Devices: A Review.
    Zhang H; Shen Q; Zheng P; Wang H; Zou R; Zhang Z; Pan Y; Zhi JY; Xiang ZR
    Small Methods; 2024 Jan; 8(1):e2300771. PubMed ID: 37853661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Dot Hybridization of Piezoelectric Polymer Films for Non-Transfer Integration of Flexible Biomechanical Energy Harvesters.
    Fu H; Long Z; Lai M; Cao J; Zhou R; Gong J; Chen Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29934-29944. PubMed ID: 35730788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Energy Harvester Based on Poly(vinylidene fluoride) Composite Films.
    Yoon S; Shin DJ; Ko YH; Cho KH; Koh JH
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1289-1294. PubMed ID: 30469177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.