BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38739165)

  • 1. Mechanistic understanding of the thermal-assisted photocatalytic oxidation of methanol-to-formaldehyde with water vapor over Pt/SrTiO
    Deitermann M; Sato T; Haver Y; Schnegg A; Muhler M; Mei BT
    Phys Chem Chem Phys; 2024 May; 26(20):14960-14969. PubMed ID: 38739165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifunctionality of Re Supported on TiO
    Phongprueksathat N; Ting KW; Mine S; Jing Y; Toyoshima R; Kondoh H; Shimizu KI; Toyao T; Urakawa A
    ACS Catal; 2023 Aug; 13(16):10734-10750. PubMed ID: 37614518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates.
    Jusys Z; Behm RJ
    Beilstein J Nanotechnol; 2014; 5():747-59. PubMed ID: 24991512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the reactivity of ZnO and Au/ZnO nanoparticles by methanol adsorption: a TPD and DRIFTS study.
    Kähler K; Holz MC; Rohe M; Strunk J; Muhler M
    Chemphyschem; 2010 Aug; 11(12):2521-9. PubMed ID: 20635374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ DRIFTS-MS Methanol Adsorption Study onto Supported NiSn Nanoparticles: Mechanistic Implications in Methanol Steam Reforming.
    Bobadilla LF; Azancot L; Ivanova S; Delgado JJ; Romero-Sarria F; Centeno MA; Roger AC; Odriozola JA
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanol oxidation on a Pt(111)-OH/O surface.
    Kuzume A; Mochiduki Y; Tsuchida T; Ito M
    Phys Chem Chem Phys; 2008 Apr; 10(16):2175-9. PubMed ID: 18404223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active oxygen species adsorbed on the catalyst surface and its effect on formaldehyde oxidation over Pt/TiO
    Kim GJ; Lee SM; Chang Hong S; Kim SS
    RSC Adv; 2018 Jan; 8(7):3626-3636. PubMed ID: 35542915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) study of formaldehyde adsorption and reactions on Pd-doped nano-γ-Fe₂O₃ films.
    Huang K; Kong L; Yuan F; Xie C
    Appl Spectrosc; 2013 Aug; 67(8):930-9. PubMed ID: 23876732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into selectivity of photocatalytic methane oxidation to formaldehyde on tungsten trioxide.
    Fan Y; Jiang Y; Lin H; Li J; Xie Y; Chen A; Li S; Han D; Niu L; Tang Z
    Nat Commun; 2024 Jun; 15(1):4679. PubMed ID: 38824163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2(110) surface.
    Yuan Q; Wu Z; Jin Y; Xu L; Xiong F; Ma Y; Huang W
    J Am Chem Soc; 2013 Apr; 135(13):5212-9. PubMed ID: 23488967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into methanol and formic acid electro-oxidation on Pt: Simultaneous DEMS and ATR-SEIRAS study under well-defined flow conditions and simulations of CO spectra.
    Wang H; Abruña HD
    J Chem Phys; 2022 Jan; 156(3):034703. PubMed ID: 35065580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quasi-stable molybdenum sub-oxide with abundant oxygen vacancies that promotes CO
    Kuwahara Y; Mihogi T; Hamahara K; Kusu K; Kobayashi H; Yamashita H
    Chem Sci; 2021 Jul; 12(29):9902-9915. PubMed ID: 34349963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study.
    Engeldinger J; Richter M; Bentrup U
    Phys Chem Chem Phys; 2012 Feb; 14(7):2183-91. PubMed ID: 22090021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Sites on the ZnZrO
    Feng Z; Tang C; Zhang P; Li K; Li G; Wang J; Feng Z; Li C
    J Am Chem Soc; 2023 Jun; 145(23):12663-12672. PubMed ID: 37261391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ FTIR studies on the effect of temperature on the electro-oxidation of small organic molecules at the Ru(0001) electrode.
    Lin WF; Christensen PA
    Faraday Discuss; 2002; (121):267-84; discussion 331-64. PubMed ID: 12227573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi
    Zhang S; Pu W; Chen A; Xu Y; Wang Y; Yang C; Gong J
    J Hazard Mater; 2020 Feb; 384():121478. PubMed ID: 31653408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ pulse diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) mass spectrometry study of the water-gas shift reaction on nickel(II) oxide-zinc(II) oxide catalysts.
    Tang CW; Chuang SS
    Appl Spectrosc; 2014; 68(2):238-44. PubMed ID: 24480281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidating the mechanism of photocatalytic reduction of bicarbonate (aqueous CO
    Nguyen VC; Nimbalkar DB; Hoang Huong V; Lee YL; Teng H
    J Colloid Interface Sci; 2023 Nov; 649():918-928. PubMed ID: 37392682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic Oxidation of Propane Using Hydrothermally Prepared Anatase-Brookite-Rutile TiO
    Cano-Casanova L; Mei B; Mul G; Lillo-Ródenas MÁ; Román-Martínez MDC
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32635452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.