These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38739426)

  • 1. Air trap and removal on a pressure driven PDMS-based microfluidic device.
    Xu F; Ma L; Fan Y
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38739426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.
    Huang C; Wippold JA; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells.
    Zheng W; Wang Z; Zhang W; Jiang X
    Lab Chip; 2010 Nov; 10(21):2906-10. PubMed ID: 20844778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdroplet PCR in Microfluidic Chip Based on Constant Pressure Regulation.
    Duanmu L; Yu Y; Meng X
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle.
    Christoforidis T; Ng C; Eddington DT
    Biomed Microdevices; 2017 Sep; 19(3):58. PubMed ID: 28646280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Facile Single-Phase-Fluid-Driven Bubble Microfluidic Generator for Potential Detection of Viruses Suspended in Air.
    Man J; Man L; Zhou C; Li J; Liang S; Zhang S; Li J
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Scalable, Modular Degasser for Passive In-Line Removal of Bubbles from Biomicrofluidic Devices.
    Musgrove HB; Saleheen A; Zatorski JM; Arneja A; Luckey CJ; Pompano RR
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives.
    Pattanayak P; Singh SK; Gulati M; Vishwas S; Kapoor B; Chellappan DK; Anand K; Gupta G; Jha NK; Gupta PK; Prasher P; Dua K; Dureja H; Kumar D; Kumar V
    Microfluid Nanofluidics; 2021; 25(12):99. PubMed ID: 34720789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of pressure-driven air bubble elimination in a microfluidic device.
    Kang JH; Kim YC; Park JK
    Lab Chip; 2008 Jan; 8(1):176-8. PubMed ID: 18094777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcoming bubble formation in polydimethylsiloxane-made PCR chips: mechanism and elimination with a high-pressure liquid seal.
    Gao S; Xu T; Wu L; Zhu X; Wang X; Jian X; Li X
    Microsyst Nanoeng; 2024 Sep; 10(1):136. PubMed ID: 39327421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimal design method for preventing air bubbles in high-temperature microfluidic devices.
    Nakayama T; Hiep HM; Furui S; Yonezawa Y; Saito M; Takamura Y; Tamiya E
    Anal Bioanal Chem; 2010 Jan; 396(1):457-64. PubMed ID: 19841913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral Degassing Method for Disposable Film-Chip Microfluidic Devices.
    Park S; Cho H; Kim J; Han KH
    Membranes (Basel); 2021 Apr; 11(5):. PubMed ID: 33925874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air-Stable Aerophobic Polydimethylsiloxane Tube with Efficient Self-Removal of Air Bubbles.
    Park J; Woo S; Kim S; Kim M; Hwang W
    ACS Omega; 2019 Nov; 4(19):18304-18311. PubMed ID: 31720531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS.
    Liu B; Tian B; Yang X; Li M; Yang J; Li D; Oh KW
    Biomicrofluidics; 2018 May; 12(3):034111. PubMed ID: 29937951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards plug and play filling of microfluidic devices by utilizing networks of capillary stop valves.
    Hagmeyer B; Zechnall F; Stelzle M
    Biomicrofluidics; 2014 Sep; 8(5):056501. PubMed ID: 25332747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete Prevention of Bubbles in a PDMS-Based Digital PCR Chip with a Multifunction Cavity.
    Gao S; Xu T; Wu L; Zhu X; Wang X; Chen Y; Li G; Li X
    Biosensors (Basel); 2024 Feb; 14(3):. PubMed ID: 38534221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices.
    Lochovsky C; Yasotharan S; Günther A
    Lab Chip; 2012 Feb; 12(3):595-601. PubMed ID: 22159026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An LED-Driven AuNPs-PDMS Microfluidic Chip and Integrated Device for the Detection of Digital Loop-Mediated Isothermal DNA Amplification.
    Zhang Z; Zhao S; Hu F; Yang G; Li J; Tian H; Peng N
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32046315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circumventing air bubbles in microfluidic systems and quantitative continuous-flow PCR applications.
    Nakayama T; Kurosawa Y; Furui S; Kerman K; Kobayashi M; Rao SR; Yonezawa Y; Nakano K; Hino A; Yamamura S; Takamura Y; Tamiya E
    Anal Bioanal Chem; 2006 Nov; 386(5):1327-33. PubMed ID: 16896609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.