These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 38739557)

  • 1. A multifaceted suite of metrics for comparative myoelectric prosthesis controller research.
    Williams HE; Shehata AW; Cheng KY; Hebert JS; Pilarski PM
    PLoS One; 2024; 19(5):e0291279. PubMed ID: 38739557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Case Series in Position-Aware Myoelectric Prosthesis Control Using Recurrent Convolutional Neural Network Classification with Transfer Learning.
    Williams HE; Hebert JS; Pilarski PM; Shehata AW
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control.
    Williams H; Shehata AW; Dawson M; Scheme E; Hebert J; Pilarski P
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2243-2255. PubMed ID: 34986093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myoelectric prosthesis users and non-disabled individuals wearing a simulated prosthesis exhibit similar compensatory movement strategies.
    Williams HE; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    J Neuroeng Rehabil; 2021 May; 18(1):72. PubMed ID: 33933105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite Recurrent Convolutional Neural Networks Offer a Position-Aware Prosthesis Control Alternative While Balancing Predictive Accuracy with Training Burden.
    Williams HE; Gunther J; Hebert JS; Pilarski PM; Shehata AW
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations.
    Betthauser JL; Hunt CL; Osborn LE; Kaliki RR; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6373-6376. PubMed ID: 28325032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.
    Matrone GC; Cipriani C; Carrozza MC; Magenes G
    J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper limb activity in myoelectric prosthesis users is biased towards the intact limb and appears unrelated to goal-directed task performance.
    Chadwell A; Kenney L; Granat MH; Thies S; Head J; Galpin A; Baker R; Kulkarni J
    Sci Rep; 2018 Jul; 8(1):11084. PubMed ID: 30038402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: a case study.
    Dewald HA; Lukyanenko P; Lambrecht JM; Anderson JR; Tyler DJ; Kirsch RF; Williams MR
    J Neuroeng Rehabil; 2019 Nov; 16(1):147. PubMed ID: 31752886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
    Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM
    Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives on the comparative benefits of body-powered and myoelectric upper limb prostheses.
    Engdahl SM; Gonzalez MA; Lee C; Gates DH
    J Neuroeng Rehabil; 2024 Aug; 21(1):138. PubMed ID: 39118106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hand Function Kinematics when using a Simulated Myoelectric Prosthesis.
    Williams HE; Boser QA; Pilarski PM; Chapman CS; Vette AH; Hebert JS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():169-174. PubMed ID: 31374625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks.
    Thies SB; Kenney LP; Sobuh M; Galpin A; Kyberd P; Stine R; Major MJ
    Med Eng Phys; 2017 Sep; 47():137-143. PubMed ID: 28684214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A scoping review of eye tracking metrics used to assess visuomotor behaviours of upper limb prosthesis users.
    Cheng KY; Rehani M; Hebert JS
    J Neuroeng Rehabil; 2023 Apr; 20(1):49. PubMed ID: 37095489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adapting myoelectric control in real-time using a virtual environment.
    Woodward RB; Hargrove LJ
    J Neuroeng Rehabil; 2019 Jan; 16(1):11. PubMed ID: 30651109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Analysis of Body Movements of Myoelectric Prosthesis Users During Standardized Clinical Tests.
    Vujaklija I; Jung MK; Hasenoehrl T; Roche AD; Sturma A; Muceli S; Crevenna R; Aszmann OC; Farina D
    IEEE Trans Biomed Eng; 2023 Mar; 70(3):789-799. PubMed ID: 36037457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement quality of conventional prostheses and the DEKA Arm during everyday tasks.
    Cowley J; Resnik L; Wilken J; Smurr Walters L; Gates D
    Prosthet Orthot Int; 2017 Feb; 41(1):33-40. PubMed ID: 26932980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.