These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 38739557)
21. Motor unit drive: a neural interface for real-time upper limb prosthetic control. Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105 [TBL] [Abstract][Full Text] [Related]
22. Application of machine learning to the identification of joint degrees of freedom involved in abnormal movement during upper limb prosthesis use. Wang SL; Bloomer C; Civillico G; Kontson K PLoS One; 2021; 16(2):e0246795. PubMed ID: 33571311 [TBL] [Abstract][Full Text] [Related]
23. Towards better understanding and reducing the effect of limb position on myoelectric upper-limb prostheses. Masters MR; Smith RJ; Soares AB; Thakor NV Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2577-80. PubMed ID: 25570517 [TBL] [Abstract][Full Text] [Related]
24. Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning. Tam S; Boukadoum M; Campeau-Lecours A; Gosselin B Sci Rep; 2021 May; 11(1):11275. PubMed ID: 34050220 [TBL] [Abstract][Full Text] [Related]
25. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning. Vasan G; Pilarski PM IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501 [TBL] [Abstract][Full Text] [Related]
27. A comparison of compensatory movements between body-powered and myoelectric prosthesis users during activities of daily living. Engdahl SM; Lee C; Gates DH Clin Biomech (Bristol, Avon); 2022 Jul; 97():105713. PubMed ID: 35809535 [TBL] [Abstract][Full Text] [Related]
28. Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss. Segil JL; Huddle SA; Weir RFF IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):618-627. PubMed ID: 27390181 [TBL] [Abstract][Full Text] [Related]
29. Stable, simultaneous and proportional 4-DoF prosthetic hand control via synergy-inspired linear interpolation: a case series. Lukyanenko P; Dewald HA; Lambrecht J; Kirsch RF; Tyler DJ; Williams MR J Neuroeng Rehabil; 2021 Mar; 18(1):50. PubMed ID: 33736656 [TBL] [Abstract][Full Text] [Related]
30. Classification of Multiple Finger Motions During Dynamic Upper Limb Movements. Yang D; Yang W; Huang Q; Liu H IEEE J Biomed Health Inform; 2017 Jan; 21(1):134-141. PubMed ID: 26469791 [TBL] [Abstract][Full Text] [Related]
31. Validity and Impact of Methods for Collecting Training Data for Myoelectric Prosthetic Control Algorithms. Tully TN; Thomson CJ; Clark GA; George JA IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1974-1983. PubMed ID: 38739519 [TBL] [Abstract][Full Text] [Related]
32. Real-time evaluation of a myoelectric control method for high-level upper limb amputees based on homologous leg movements. Lyons KR; Joshi SS Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6365-6368. PubMed ID: 28269705 [TBL] [Abstract][Full Text] [Related]
33. Improving bimanual interaction with a prosthesis using semi-autonomous control. Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087 [TBL] [Abstract][Full Text] [Related]
34. Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis. Hargrove L; Miller L; Turner K; Kuiken T J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):60. PubMed ID: 30255800 [TBL] [Abstract][Full Text] [Related]
35. The SoftHand Pro platform: a flexible prosthesis with a user-centered approach. Capsi-Morales P; Piazza C; Grioli G; Bicchi A; Catalano MG J Neuroeng Rehabil; 2023 Feb; 20(1):20. PubMed ID: 36755249 [TBL] [Abstract][Full Text] [Related]
36. User training for machine learning controlled upper limb prostheses: a serious game approach. Kristoffersen MB; Franzke AW; Bongers RM; Wand M; Murgia A; van der Sluis CK J Neuroeng Rehabil; 2021 Feb; 18(1):32. PubMed ID: 33579326 [TBL] [Abstract][Full Text] [Related]
37. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
38. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines. Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511 [TBL] [Abstract][Full Text] [Related]
39. Activities of daily living with bionic arm improved by combination training and latching filter in prosthesis control comparison. Paskett MD; Brinton MR; Hansen TC; George JA; Davis TS; Duncan CC; Clark GA J Neuroeng Rehabil; 2021 Feb; 18(1):45. PubMed ID: 33632237 [TBL] [Abstract][Full Text] [Related]
40. Intermanual transfer in training with an upper-limb myoelectric prosthesis simulator: a mechanistic, randomized, pretest-posttest study. Romkema S; Bongers RM; van der Sluis CK Phys Ther; 2013 Jan; 93(1):22-31. PubMed ID: 22976445 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]