These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38739671)

  • 1. Topological state-space estimation of functional human brain networks.
    Chung MK; Huang SG; Carroll IC; Calhoun VD; Goldsmith HH
    PLoS Comput Biol; 2024 May; 20(5):e1011869. PubMed ID: 38739671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open eyes and closed eyes elicit different temporal properties of brain functional networks.
    Weng Y; Liu X; Hu H; Huang H; Zheng S; Chen Q; Song J; Cao B; Wang J; Wang S; Huang R
    Neuroimage; 2020 Nov; 222():117230. PubMed ID: 32771616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unified topological inference for brain networks in temporal lobe epilepsy using the Wasserstein distance.
    Chung MK; Ramos CG; De Paiva FB; Mathis J; Prabhakaran V; Nair VA; Meyerand ME; Hermann BP; Binder JR; Struck AF
    Neuroimage; 2023 Dec; 284():120436. PubMed ID: 37931870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed connectivity of brain default networks in resting state using GCA and motif.
    Jiao Z; Wang H; Ma K; Zou L; Xiang J
    Front Biosci (Landmark Ed); 2017 Jun; 22(10):1634-1643. PubMed ID: 28410136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Default Mode Network across Different Brain States.
    Lin P; Yang Y; Gao J; De Pisapia N; Ge S; Wang X; Zuo CS; Jonathan Levitt J; Niu C
    Sci Rep; 2017 Apr; 7():46088. PubMed ID: 28382944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-level bootstrap analysis of stable clusters in resting-state fMRI.
    Bellec P; Rosa-Neto P; Lyttelton OC; Benali H; Evans AC
    Neuroimage; 2010 Jul; 51(3):1126-39. PubMed ID: 20226257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological fractionation of resting-state networks.
    Ding JR; Liao W; Zhang Z; Mantini D; Xu Q; Wu GR; Lu G; Chen H
    PLoS One; 2011; 6(10):e26596. PubMed ID: 22028917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic overlapping modular organization of human brain functional networks revealed by a multiobjective evolutionary algorithm.
    Lin Y; Ma J; Gu Y; Yang S; Li LMW; Dai Z
    Neuroimage; 2018 Nov; 181():430-445. PubMed ID: 30005918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driving and driven architectures of directed small-world human brain functional networks.
    Yan C; He Y
    PLoS One; 2011; 6(8):e23460. PubMed ID: 21858129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study.
    Wang J; Wang L; Zang Y; Yang H; Tang H; Gong Q; Chen Z; Zhu C; He Y
    Hum Brain Mapp; 2009 May; 30(5):1511-23. PubMed ID: 18649353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised learning of functional network dynamics in resting state fMRI.
    Eavani H; Satterthwaite TD; Gur RE; Gur RC; Davatzikos C
    Inf Process Med Imaging; 2013; 23():426-37. PubMed ID: 24683988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.
    van den Heuvel MP; Mandl RC; Kahn RS; Hulshoff Pol HE
    Hum Brain Mapp; 2009 Oct; 30(10):3127-41. PubMed ID: 19235882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related reorganizational changes in modularity and functional connectivity of human brain networks.
    Song J; Birn RM; Boly M; Meier TB; Nair VA; Meyerand ME; Prabhakaran V
    Brain Connect; 2014 Nov; 4(9):662-76. PubMed ID: 25183440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different topological organization of human brain functional networks with eyes open versus eyes closed.
    Xu P; Huang R; Wang J; Van Dam NT; Xie T; Dong Z; Chen C; Gu R; Zang YF; He Y; Fan J; Luo YJ
    Neuroimage; 2014 Apr; 90():246-55. PubMed ID: 24434242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale Functional Brain Network Reorganization During Taoist Meditation.
    Jao T; Li CW; Vértes PE; Wu CW; Achard S; Hsieh CH; Liou CH; Chen JH; Bullmore ET
    Brain Connect; 2016 Feb; 6(1):9-24. PubMed ID: 26165867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological phase transitions in functional brain networks.
    Santos FAN; Raposo EP; Coutinho-Filho MD; Copelli M; Stam CJ; Douw L
    Phys Rev E; 2019 Sep; 100(3-1):032414. PubMed ID: 31640025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconfiguration of the Brain Functional Network Associated with Visual Task Demands.
    Wen X; Zhang D; Liang B; Zhang R; Wang Z; Wang J; Liu M; Huang R
    PLoS One; 2015; 10(7):e0132518. PubMed ID: 26146993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.
    Tian L; Wang J; Yan C; He Y
    Neuroimage; 2011 Jan; 54(1):191-202. PubMed ID: 20688177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.