These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38739746)

  • 21. Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane.
    Hasani-Sadrabadi MM; Dashtimoghadam E; Majedi FS; Moaddel H; Bertsch A; Renaud P
    Nanoscale; 2013 Dec; 5(23):11710-7. PubMed ID: 24108383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties.
    Sun H; Tang B; Wu P
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35075-35085. PubMed ID: 28952721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions.
    Escorihuela J; Sahuquillo Ó; García-Bernabé A; Giménez E; Compañ V
    Nanomaterials (Basel); 2018 Sep; 8(10):. PubMed ID: 30274316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proton Conductivity Enhancement at High Temperature on Polybenzimidazole Membrane Electrolyte with Acid-Functionalized Graphene Oxide Fillers.
    Sulaiman RRR; Walvekar R; Wong WY; Khalid M; Pang MM
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells.
    Javed A; Palafox Gonzalez P; Thangadurai V
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):29674-29699. PubMed ID: 37326582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells.
    Xu Z; Chen N; Huang S; Wang S; Han D; Xiao M; Meng Y
    Molecules; 2024 Sep; 29(18):. PubMed ID: 39339475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of Stable Wide-Temperature-Range Proton Exchange Membranes by Incorporating a Carbonized Metal-Organic Frame into Polybenzimidazoles and Polyacrylamide Hydrogels.
    Yin B; Liang R; Liang X; Fu D; Wang L; Sun G
    Small; 2021 Oct; 17(43):e2103214. PubMed ID: 34590404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comparative Study of CCM and CCS Membrane Electrode Assemblies for High-Temperature Proton Exchange Membrane Fuel Cells with a CsH
    Li Y; Fu Z; Li Y; Zhang G
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs.
    Olvera-Mancilla J; Escorihuela J; Alexandrova L; Andrio A; García-Bernabé A; Del Castillo LF; Compañ V
    Soft Matter; 2020 Aug; 16(32):7624-7635. PubMed ID: 32735001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double cross-linked 3D layered PBI proton exchange membranes for stable fuel cell performance above 200 °C.
    Zhang L; Liu M; Zhu D; Tang M; Zhu T; Gao C; Huang F; Xue L
    Nat Commun; 2024 Apr; 15(1):3409. PubMed ID: 38649702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells.
    Zeis R
    Beilstein J Nanotechnol; 2015; 6():68-83. PubMed ID: 25671153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly proton-conductive and low swelling polymeric membranes achieved by hydrophilic covalent cross-linking.
    Cui C; Sun P; Wang Y; Ding H; Qu Z; Zhang B; Tian Y; Li Z
    J Colloid Interface Sci; 2024 Oct; 672():664-674. PubMed ID: 38865880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanocomposite membranes of polybenzimidazole and amine-functionalized carbon nanofibers for high temperature proton exchange membrane fuel cells.
    Jheng LC; Rosidah AA; Hsu SL; Ho KS; Pan CJ; Cheng CW
    RSC Adv; 2021 Mar; 11(17):9964-9976. PubMed ID: 35423528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells.
    Chen J; Cao J; Zhang R; Zhou J; Wang S; Liu X; Zhang T; Tao X; Zhang Y
    Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphoric-Acid Retention in High-Temperature Proton-Exchange Membranes.
    Tang H; Gao J; Wang Y; Li N; Geng K
    Chemistry; 2022 Dec; 28(70):e202202064. PubMed ID: 36062406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications.
    Wang J; Gong C; Wen S; Liu H; Qin C; Xiong C; Dong L
    Carbohydr Polym; 2018 Apr; 186():200-207. PubMed ID: 29455979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton Transport in Aluminum-Substituted Mesoporous Silica Channel-Embedded High-Temperature Anhydrous Proton-Exchange Membrane Fuel Cells.
    Seo K; Nam KH; Han H
    Sci Rep; 2020 Jun; 10(1):10352. PubMed ID: 32587342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unique Self-Phosphorylating Polybenzimidazole of the 6F Family for HT-PEM Fuel Cell Application.
    Ponomarev II; Volkova YA; Skupov KM; Vtyurina ES; Ponomarev II; Ilyin MM; Nikiforov RY; Alentiev AY; Zhigalina OM; Khmelenin DN; Strelkova TV; Modestov AD
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes.
    Escorihuela J; García-Bernabé A; Compañ V
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32570990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constructing anhydrous proton exchange membranes based on cadmium telluride nanocrystal-doped sulfonated poly(ether ether ketone)/polyurethane composites.
    Jin J; Zhao J; Shen S; Yu J; Cheng S; Pan B; Che Q
    Nanotechnology; 2020 May; 31(20):205707. PubMed ID: 32000158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.