These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38739746)

  • 61. Proton-Conducting Poly-γ-glutamic Acid Nanofiber Embedded Sulfonated Poly(ether sulfone) for Proton Exchange Membranes.
    Wang H; Zhuang X; Wang X; Li C; Li Z; Kang W; Yin Y; Guiver MD; Cheng B
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21865-21873. PubMed ID: 31185563
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells.
    Fei M; Lin R; Deng Y; Xian H; Bian R; Zhang X; Cheng J; Xu C; Cai D
    Nanotechnology; 2018 Jan; 29(3):035403. PubMed ID: 29135464
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ionic Liquid in Phosphoric Acid-Doped Polybenzimidazole (PA-PBI) as Electrolyte Membranes for PEM Fuel Cells: A Review.
    Seng LK; Masdar MS; Shyuan LK
    Membranes (Basel); 2021 Sep; 11(10):. PubMed ID: 34677494
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Proton exchange membrane developed from novel blends of polybenzimidazole and poly(vinyl-1,2,4-triazole).
    Hazarika M; Jana T
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5256-65. PubMed ID: 22953698
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review.
    Vinothkannan M; Kim AR; Yoo DJ
    RSC Adv; 2021 May; 11(30):18351-18370. PubMed ID: 35480954
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats.
    Escorihuela J; García-Bernabé A; Montero A; Andrio A; Sahuquillo Ó; Gimenez E; Compañ V
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31337094
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells.
    Zhang J; Liu J; Lu S; Zhu H; Aili D; De Marco R; Xiang Y; Forsyth M; Li Q; Jiang SP
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31922-31930. PubMed ID: 28857542
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Performance Analysis and Optimization of a High-Temperature PEMFC Vehicle Based on Particle Swarm Optimization Algorithm.
    Li Y; Ma Z; Zheng M; Li D; Lu Z; Xu B
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564508
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte.
    Li J; Li X; Zhao Y; Lu W; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):896-900. PubMed ID: 22529063
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced performance of novel carbon nanotubes - sulfonated poly ether ether ketone (speek) composite proton exchange membrane in mfc application.
    Vidhyeswari D; Surendhar A; Bhuvaneshwari S
    Chemosphere; 2022 Apr; 293():133560. PubMed ID: 35026204
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes.
    Yin C; Li J; Zhou Y; Zhang H; Fang P; He C
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14026-14035. PubMed ID: 29620850
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Confined Nano-Channels Incorporated with Multi-Quaternized Cations for Highly Phosphoric Acid Retention HT-PEMs.
    Li X; Zhang B; Wang Z; Chen Y; Guo J; Kang S; Zou W; Zheng J; Li S; Zhang S
    Small; 2024 May; 20(22):e2308860. PubMed ID: 38168096
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-Performance of PEI/Nafion/ox-MWCNT Composite Membranes Based on Semi-Interpenetrating Polymer Networks for PEMFCs.
    Kim HJ; Talukdar K; Kim YH; Lee HC; Choi SJ
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8825-31. PubMed ID: 26726601
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Composite proton exchange membrane for fuel cells based on chitosan modified by acid-base amphoteric nanoparticles.
    Fan X; Ou Y; Yang H; Yang H; Qu T; Zhang Q; Cheng F; Hu F; Liu H; Xu Z; Gong C
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):127796. PubMed ID: 37923030
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Proton-Conducting Polymer-Coated Carbon Nanofiber Mats for Pt-Anodes of High-Temperature Polymer-Electrolyte Membrane Fuel Cell.
    Skupov KM; Ponomarev II; Vtyurina ES; Volkova YA; Ponomarev II; Zhigalina OM; Khmelenin DN; Cherkovskiy EN; Modestov AD
    Membranes (Basel); 2023 Apr; 13(5):. PubMed ID: 37233540
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Composite Proton-Conducting Membrane with Enhanced Phosphoric Acid Doping of Basic Films Radiochemically Grafted with Binary Vinyl Heterocyclic Monomer Mixtures.
    Sithambaranathan P; Nasef MM; Ahmad A; Abbasi A; Ting TM
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676912
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of Organo-Silanes Structure on the Properties of Silane-Crosslinked Membranes Based on Cardo Polybenzimidazole PBI-O-PhT.
    Lysova AA; Ponomarev II; Skupov KM; Vtyurina ES; Lysov KA; Yaroslavtsev AB
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363633
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition.
    Wu B; Pan J; Ge L; Wu L; Wang H; Xu T
    Sci Rep; 2014 Aug; 4():4334. PubMed ID: 25082522
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Studies on Polybenzimidazole and Methanesulfonate Protic-Ionic-Liquids-Based Composite Polymer Electrolyte Membranes.
    Anis A; Alam M; Alhamidi A; Gupta RK; Tariq M; Al-Zahrani SM
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447466
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhancing performance of ZnO dye-sensitized solar cells by incorporation of multiwalled carbon nanotubes.
    Chang WC; Cheng YY; Yu WC; Yao YC; Lee CH; Ko HH
    Nanoscale Res Lett; 2012 Mar; 7(1):166. PubMed ID: 22390565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.