BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38739748)

  • 1. Synergistic Photoenzymatic Catalysis Enables Synthesis of
    Ouyang Y; Page CG; Bilodeau C; Hyster TK
    J Am Chem Soc; 2024 May; 146(20):13754-13759. PubMed ID: 38739748
    [No Abstract]   [Full Text] [Related]  

  • 2. Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling.
    Wang TC; Mai BK; Zhang Z; Bo Z; Li J; Liu P; Yang Y
    Nature; 2024 May; 629(8010):98-104. PubMed ID: 38693411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the threonine aldolase toolbox for the asymmetric synthesis of tertiary α-amino acids.
    Fesko K; Strohmeier GA; Breinbauer R
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9651-61. PubMed ID: 26189018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of beta-hydroxy-alpha-amino acids with a reengineered alanine racemase.
    Fesko K; Giger L; Hilvert D
    Bioorg Med Chem Lett; 2008 Nov; 18(22):5987-90. PubMed ID: 18760921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threonine aldolases.
    Franz SE; Stewart JD
    Adv Appl Microbiol; 2014; 88():57-101. PubMed ID: 24767426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical alkylation of isocyanides with amino acid-/peptide-derived Katritzky salts via photoredox catalysis.
    Zhu ZF; Zhang MM; Liu F
    Org Biomol Chem; 2019 Feb; 17(6):1531-1534. PubMed ID: 30681112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis.
    Cheng L; Li D; Mai BK; Bo Z; Cheng L; Liu P; Yang Y
    Science; 2023 Jul; 381(6656):444-451. PubMed ID: 37499030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the catalytic mechanism and stereospecificity of Escherichia coli L-threonine aldolase.
    di Salvo ML; Remesh SG; Vivoli M; Ghatge MS; Paiardini A; D'Aguanno S; Safo MK; Contestabile R
    FEBS J; 2014 Jan; 281(1):129-45. PubMed ID: 24165453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of E. coli L-threonine aldolase catalytic inactivation at low pH.
    Remesh SG; Ghatge MS; Ahmed MH; Musayev FN; Gandhi A; Chowdhury N; di Salvo ML; Kellogg GE; Contestabile R; Schirch V; Safo MK
    Biochim Biophys Acta; 2015 Apr; 1854(4):278-83. PubMed ID: 25560296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threonine aldolases-screening, properties and applications in the synthesis of non-proteinogenic beta-hydroxy-alpha-amino acids.
    Dückers N; Baer K; Simon S; Gröger H; Hummel W
    Appl Microbiol Biotechnol; 2010 Sep; 88(2):409-24. PubMed ID: 20683718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Catalytic mechanism, molecular engineering and applications of threonine aldolases].
    Chen Q; Chen X; Hao J; Zhu D
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4215-4230. PubMed ID: 34984869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of fluorinated amino acids by low-specificity, promiscuous aldolases coupled to in situ fluorodonor generation.
    De Maria A; Nieto-Domínguez M; Nikel PI
    Methods Enzymol; 2024; 696():199-229. PubMed ID: 38658080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. l-Threonine Transaldolase Activity Is Enabled by a Persistent Catalytic Intermediate.
    Kumar P; Meza A; Ellis JM; Carlson GA; Bingman CA; Buller AR
    ACS Chem Biol; 2021 Jan; 16(1):86-95. PubMed ID: 33337128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unusual electronic effect of an aromatic-F in phase-transfer catalysts derived from cinchona-alkaloid.
    Jew SS; Yoo MS; Jeong BS; Park IY; Park HG
    Org Lett; 2002 Nov; 4(24):4245-8. PubMed ID: 12443069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threonine aldolases: perspectives in engineering and screening the enzymes with enhanced substrate and stereo specificities.
    Fesko K
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2579-90. PubMed ID: 26810201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly enantioselective phase-transfer-catalyzed alkylation of protected alpha-amino acid amides toward practical asymmetric synthesis of vicinal diamines, alpha-amino ketones, and alpha-amino alcohols.
    Ooi T; Takeuchi M; Kato D; Uematsu Y; Tayama E; Sakai D; Maruoka K
    J Am Chem Soc; 2005 Apr; 127(14):5073-83. PubMed ID: 15810842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate.
    Scarsdale JN; Radaev S; Kazanina G; Schirch V; Wright HT
    J Mol Biol; 2000 Feb; 296(1):155-68. PubMed ID: 10656824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric synthesis of sterically and electronically demanding linear ω-trifluoromethyl containing amino acids via alkylation of chiral equivalents of nucleophilic glycine and alanine.
    Wang J; Lin D; Zhou S; Ding X; Soloshonok VA; Liu H
    J Org Chem; 2011 Jan; 76(2):684-7. PubMed ID: 21182272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and application of threonine aldolase for synthesis of valuable α-amino, β-hydroxy-building blocks.
    Ligibel M; Moore C; Bruccoleri R; Snajdrova R
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140323. PubMed ID: 31740414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereospecificity of alpha-proton exchange reactions catalysed by pyridoxal-5'-phosphate-dependent enzymes.
    Malthouse JP
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):138-42. PubMed ID: 12686123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.