These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38739757)

  • 1. Unlocking Photocatalytic Activity of Acridinium Salts by Anion-Binding Co-Catalysis.
    Pérez-Aguilar MC; Entgelmeier LM; Herrera-Luna JC; Daniliuc CG; Consuelo Jiménez M; Pérez-Ruiz R; García Mancheño O
    Chemistry; 2024 Jul; 30(39):e202400541. PubMed ID: 38739757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.
    Margrey KA; Nicewicz DA
    Acc Chem Res; 2016 Sep; 49(9):1997-2006. PubMed ID: 27588818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Characterization of Acridinium Dyes for Photoredox Catalysis.
    White AR; Wang L; Nicewicz DA
    Synlett; 2019; 30(7):827-832. PubMed ID: 34092926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced Arylation of Acridinium Salts: Tunable Photoredox Catalysts for C-O Bond Cleavage.
    Cao YX; Zhu G; Li Y; Le Breton N; Gourlaouen C; Choua S; Boixel J; Jacquot de Rouville HP; Soulé JF
    J Am Chem Soc; 2022 Apr; 144(13):5902-5909. PubMed ID: 35316065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoorganocatalysis, small organic molecules and light in the service of organic synthesis: the awakening of a sleeping giant.
    Sideri IK; Voutyritsa E; Kokotos CG
    Org Biomol Chem; 2018 Jul; 16(25):4596-4614. PubMed ID: 29888357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective counter-anions in photoredox catalysis: the asymmetric cation radical Diels-Alder reaction.
    Morse PD; Nguyen TM; Cruz CL; Nicewicz DA
    Tetrahedron; 2018 Jun; 74(26):3266-3272. PubMed ID: 30287974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lanthanide Photocatalysis.
    Qiao Y; Schelter EJ
    Acc Chem Res; 2018 Nov; 51(11):2926-2936. PubMed ID: 30335356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The direct anti-Markovnikov addition of mineral acids to styrenes.
    Wilger DJ; Grandjean JM; Lammert TR; Nicewicz DA
    Nat Chem; 2014 Aug; 6(8):720-6. PubMed ID: 25054943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis.
    Joshi-Pangu A; Lévesque F; Roth HG; Oliver SF; Campeau LC; Nicewicz D; DiRocco DA
    J Org Chem; 2016 Aug; 81(16):7244-9. PubMed ID: 27454776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decatungstate Anion for Photocatalyzed "Window Ledge" Reactions.
    Ravelli D; Protti S; Fagnoni M
    Acc Chem Res; 2016 Oct; 49(10):2232-2242. PubMed ID: 27648722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ad Hoc Adjustment of Photoredox Properties by the Late-Stage Diversification of Acridinium Photocatalysts.
    Hutskalova V; Sparr C
    Org Lett; 2021 Jul; 23(13):5143-5147. PubMed ID: 34110179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Markovnikov Hydroazidation of Activated Olefins via Organic Photoredox Catalysis.
    Onuska NPR; Schutzbach-Horton ME; Rosario Collazo JL; Nicewicz DA
    Synlett; 2020; 31(1):55-59. PubMed ID: 34108817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-Poor Acridones and Acridiniums as Super Photooxidants in Molecular Photoelectrochemistry by Unusual Mechanisms.
    Žurauskas J; Boháčová S; Wu S; Butera V; Schmid S; Domański M; Slanina T; Barham JP
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202307550. PubMed ID: 37584300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis.
    Farney EP; Chapman SJ; Swords WB; Torelli MD; Hamers RJ; Yoon TP
    J Am Chem Soc; 2019 Apr; 141(15):6385-6391. PubMed ID: 30897327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.