BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38740194)

  • 1. Enhancing reclaimed water distribution network resilience with cost-effective meshing.
    Martínez D; Bergillos S; Corominas L; Comas J; Wang F; Kooij R; Calle E
    Sci Total Environ; 2024 Aug; 938():173051. PubMed ID: 38740194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydraulically informed graph theoretic measure of link criticality for the resilience analysis of water distribution networks.
    Ulusoy AJ; Stoianov I; Chazerain A
    Appl Netw Sci; 2018; 3(1):31. PubMed ID: 30839751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 2023 Latin America report of the
    Hartinger SM; Palmeiro-Silva YK; Llerena-Cayo C; Blanco-Villafuerte L; Escobar LE; Diaz A; Sarmiento JH; Lescano AG; Melo O; Rojas-Rueda D; Takahashi B; Callaghan M; Chesini F; Dasgupta S; Posse CG; Gouveia N; Martins de Carvalho A; Miranda-Chacón Z; Mohajeri N; Pantoja C; Robinson EJZ; Salas MF; Santiago R; Sauma E; Santos-Vega M; Scamman D; Sergeeva M; Souza de Camargo T; Sorensen C; Umaña JD; Yglesias-González M; Walawender M; Buss D; Romanello M
    Lancet Reg Health Am; 2024 May; 33():100746. PubMed ID: 38800647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of graph and complex network theory in water distribution networks: Mathematical foundation, application and prospects.
    Yu X; Wu Y; Meng F; Zhou X; Liu S; Huang Y; Wu X
    Water Res; 2024 Apr; 253():121238. PubMed ID: 38350191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydraulic performance benchmarking for effective management of water distribution networks: An innovative composite index-based approach.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Ghosal PS
    J Environ Manage; 2021 Dec; 299():113603. PubMed ID: 34454199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-objective design-for-control for improving the pressure management and resilience of water distribution networks.
    Ulusoy AJ; Mahmoud HA; Pecci F; Keedwell EC; Stoianov I
    Water Res; 2022 Aug; 222():118914. PubMed ID: 35933815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking nature for resilient resource and infrastructure network design.
    Chatterjee A; Layton A
    Reliab Eng Syst Saf; 2020 Dec; 204():107142. PubMed ID: 33132538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply.
    Zischg J; Rauch W; Sitzenfrei R
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data.
    Li Z; Liu H; Zhang C; Fu G
    Water Res; 2024 Feb; 250():121018. PubMed ID: 38113592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph Laplace Regularization-based pressure sensor placement strategy for leak localization in the water distribution networks under joint hydraulic and topological feature spaces.
    Cheng M; Li J; Wang C; Ye C; Chang Z
    Water Res; 2024 Jun; 257():121666. PubMed ID: 38703543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A network-based framework for assessing infrastructure resilience: a case study of the London metro system.
    Chopra SS; Dillon T; Bilec MM; Khanna V
    J R Soc Interface; 2016 May; 13(118):. PubMed ID: 27146689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Many-objective optimization model for the flexible design of water distribution networks.
    Marques J; Cunha M; Savić D
    J Environ Manage; 2018 Nov; 226():308-319. PubMed ID: 30125810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gated graph neural networks for identifying contamination sources in water distribution systems.
    Li Z; Liu H; Zhang C; Fu G
    J Environ Manage; 2024 Feb; 351():119806. PubMed ID: 38118345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inherent costs and interdependent impacts of infrastructure network resilience.
    Baroud H; Barker K; Ramirez-Marquez JE; Rocco CM
    Risk Anal; 2015 Apr; 35(4):642-62. PubMed ID: 24924523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient supply management in water flow network using graph spectral techniques.
    Gopalsamy T; Thankappan V; Chandramohan S
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):2530-2543. PubMed ID: 35932342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological attributes of network resilience: A study in water distribution systems.
    Meng F; Fu G; Farmani R; Sweetapple C; Butler D
    Water Res; 2018 Oct; 143():376-386. PubMed ID: 29986247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vulnerability analysis of water distribution networks to accidental pipe burst.
    Wéber R; Huzsvár T; Hős C
    Water Res; 2020 Oct; 184():116178. PubMed ID: 32707306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interconnectedness enhances network resilience of multimodal public transportation systems for Safe-to-Fail urban mobility.
    Xu Z; Chopra SS
    Nat Commun; 2023 Jul; 14(1):4291. PubMed ID: 37463908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resilience assessment of centralized and distributed food systems.
    Karan EP; Asgari S; Asadi S
    Food Secur; 2023; 15(1):59-75. PubMed ID: 36186417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing supply chain resilience through efficient redundancy allocation: a risk-averse mathematical model.
    Riccardo A; Daria B; Dmitry I
    IFAC Pap OnLine; 2021; 54(1):1011-1016. PubMed ID: 38620997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.