These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38740203)
1. What potential do mosses have as biomonitors of POPs? A comparative study of hexachlorocyclohexane sorption. Chaos Z; Fernández JA; Balseiro-Romero M; Celeiro M; García-Jares C; Méndez A; Pérez-Alonso P; Estébanez B; Kaal J; Nierop KGJ; Aboal JR; Monterroso C Sci Total Environ; 2024 Jul; 934():173021. PubMed ID: 38740203 [TBL] [Abstract][Full Text] [Related]
2. Metal and proton adsorption capacities of natural and cloned Sphagnum mosses. Gonzalez AG; Pokrovsky OS; Beike AK; Reski R; Di Palma A; Adamo P; Giordano S; Angel Fernandez J J Colloid Interface Sci; 2016 Jan; 461():326-334. PubMed ID: 26407060 [TBL] [Abstract][Full Text] [Related]
3. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application. Wu Q; Wang X; Zhou Q Environ Int; 2014 May; 66():28-37. PubMed ID: 24518433 [TBL] [Abstract][Full Text] [Related]
4. Biosurface properties and lead adsorption in a clone of Sphagnum palustre (Mosses): Towards a unified protocol of biomonitoring of airborne heavy metal pollution. Di Palma A; González AG; Adamo P; Giordano S; Reski R; Pokrovsky OS Chemosphere; 2019 Dec; 236():124375. PubMed ID: 31344617 [TBL] [Abstract][Full Text] [Related]
5. Unravelling the metal uptake process in mosses: Comparison of aquatic and terrestrial species as air pollution biomonitors. García-Seoane R; Antelo J; Fiol S; Fernández JA; Aboal JR Environ Pollut; 2023 Sep; 333():122069. PubMed ID: 37330186 [TBL] [Abstract][Full Text] [Related]
6. Using devitalized moss for active biomonitoring of water pollution. Debén S; Fernández JA; Carballeira A; Aboal JR Environ Pollut; 2016 Mar; 210():315-22. PubMed ID: 26803787 [TBL] [Abstract][Full Text] [Related]
7. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses--a review. Augusto S; Máguas C; Branquinho C Environ Pollut; 2013 Sep; 180():330-8. PubMed ID: 23768993 [TBL] [Abstract][Full Text] [Related]
8. Sphagnum palustre clone vs native Pseudoscleropodium purum: A first trial in the field to validate the future of the moss bag technique. Capozzi F; Adamo P; Di Palma A; Aboal JR; Bargagli R; Fernandez JA; Lopez Mahia P; Reski R; Tretiach M; Spagnuolo V; Giordano S Environ Pollut; 2017 Jun; 225():323-328. PubMed ID: 28262376 [TBL] [Abstract][Full Text] [Related]
9. Evidence on the effectiveness of mosses for biomonitoring of microplastics in fresh water environment. Capozzi F; Carotenuto R; Giordano S; Spagnuolo V Chemosphere; 2018 Aug; 205():1-7. PubMed ID: 29677573 [TBL] [Abstract][Full Text] [Related]
10. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Harmens H; Foan L; Simon V; Mills G Environ Pollut; 2013 Feb; 173():245-54. PubMed ID: 23202982 [TBL] [Abstract][Full Text] [Related]
11. Active moss biomonitoring for extensive screening of urban air pollution: Magnetic and chemical analyses. Vuković G; Urošević MA; Goryainova Z; Pergal M; Škrivanj S; Samson R; Popović A Sci Total Environ; 2015 Jul; 521-522():200-10. PubMed ID: 25839179 [TBL] [Abstract][Full Text] [Related]
12. Is Active Moss Biomonitoring Comparable to Air Filter Standard Sampling? Świsłowski P; Nowak A; Wacławek S; Ziembik Z; Rajfur M Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457569 [TBL] [Abstract][Full Text] [Related]
13. Global Monitoring of Persistent Organic Pollutants (POPs) Using Seabird Preen Gland Oil. Yamashita R; Takada H; Nakazawa A; Takahashi A; Ito M; Yamamoto T; Watanabe YY; Kokubun N; Sato K; Wanless S; Daunt F; Hyrenbach D; Hester M; Deguchi T; Nishizawa B; Shoji A; Watanuki Y Arch Environ Contam Toxicol; 2018 Nov; 75(4):545-556. PubMed ID: 30232531 [TBL] [Abstract][Full Text] [Related]
14. Tracking the route of phenanthrene uptake in mosses: An experimental trial. Spagnuolo V; Figlioli F; De Nicola F; Capozzi F; Giordano S Sci Total Environ; 2017 Jan; 575():1066-1073. PubMed ID: 27693154 [TBL] [Abstract][Full Text] [Related]
15. Moss bag monitoring as screening technique to estimate the relevance of methylated arsine emission. Arndt J; Planer-Friedrich B Sci Total Environ; 2018 Jan; 610-611():1590-1594. PubMed ID: 28648372 [TBL] [Abstract][Full Text] [Related]
16. PCA and multidimensional visualization techniques united to aid in the bioindication of elements from transplanted Sphagnum palustre moss exposed in the Gdańsk City area. Astel A; Astel K; Biziuk M Environ Sci Pollut Res Int; 2008 Jan; 15(1):41-50. PubMed ID: 18306887 [TBL] [Abstract][Full Text] [Related]
17. Moss bag biomonitoring of airborne toxic element decrease on a small scale: A street study in Belgrade, Serbia. Vuković G; Aničić Urošević M; Škrivanj S; Milićević T; Dimitrijević D; Tomašević M; Popović A Sci Total Environ; 2016 Jan; 542(Pt A):394-403. PubMed ID: 26520264 [TBL] [Abstract][Full Text] [Related]
18. Sorption of cadmium and zinc in selected species of epigeic mosses. Kłos A; Gordzielik E; Jóźwiak MA; Rajfur M Bull Environ Contam Toxicol; 2014 Mar; 92(3):323-8. PubMed ID: 24469606 [TBL] [Abstract][Full Text] [Related]
19. The Application of Active Biomonitoring with the Use of Mosses to Identify Polycyclic Aromatic Hydrocarbons in an Atmospheric Aerosol. Świsłowski P; Hrabák P; Wacławek S; Liskova K; Antos V; Rajfur M; Ząbkowska-Wacławek M Molecules; 2021 Nov; 26(23):. PubMed ID: 34885844 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Exposure Techniques and Vitality Assessment of Mosses in Active Biomonitoring for Their Suitability in Assessing Heavy Metal Pollution in Atmospheric Aerosol. Świsłowski P; Nowak A; Rajfur M Environ Toxicol Chem; 2022 Jun; 41(6):1429-1438. PubMed ID: 35213067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]