These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38740208)
1. Application of phosphogypsum and phosphate-solubilizing fungi to Pb remediation: From simulation to in vivo incubation. Meng L; Ding K; Qiu Y; Chen Y; Huo H; Yu D; Tian D; Li Z Sci Total Environ; 2024 Jul; 933():173171. PubMed ID: 38740208 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the survival of Aspergillus niger in a highly polluted red soil with addition of Phosphogypsum and bioorganic fertilizer. Meng L; Pan S; Zhou L; Santasup C; Su M; Tian D; Li Z Environ Sci Pollut Res Int; 2022 Oct; 29(50):76446-76455. PubMed ID: 35670942 [TBL] [Abstract][Full Text] [Related]
3. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum. Tian D; Wang W; Su M; Zheng J; Wu Y; Wang S; Li Z; Hu S Environ Sci Pollut Res Int; 2018 Jul; 25(21):21118-21126. PubMed ID: 29770937 [TBL] [Abstract][Full Text] [Related]
4. Lead immobilization assisted by fungal decomposition of organophosphate under various pH values. Zhang L; Song X; Shao X; Wu Y; Zhang X; Wang S; Pan J; Hu S; Li Z Sci Rep; 2019 Sep; 9(1):13353. PubMed ID: 31527665 [TBL] [Abstract][Full Text] [Related]
5. A study of P release from Fe-P and Ca-P via the organic acids secreted by Aspergillus niger. Tian D; Wang L; Hu J; Zhang L; Zhou N; Xia J; Xu M; Yusef KK; Wang S; Li Z; Gao H J Microbiol; 2021 Sep; 59(9):819-826. PubMed ID: 34382148 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid. Su X; Zhu J; Fu Q; Zuo J; Liu Y; Hu H J Environ Sci (China); 2015 Feb; 28():64-73. PubMed ID: 25662240 [TBL] [Abstract][Full Text] [Related]
7. Lead immobilization by geological fluorapatite and fungus Aspergillus niger. Li Z; Wang F; Bai T; Tao J; Guo J; Yang M; Wang S; Hu S J Hazard Mater; 2016 Dec; 320():386-392. PubMed ID: 27585270 [TBL] [Abstract][Full Text] [Related]
8. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Tian D; Jiang Z; Jiang L; Su M; Feng Z; Zhang L; Wang S; Li Z; Hu S Environ Microbiol; 2019 Jan; 21(1):471-479. PubMed ID: 30421848 [TBL] [Abstract][Full Text] [Related]
9. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Li C; Li Q; Wang Z; Ji G; Zhao H; Gao F; Su M; Jiao J; Li Z; Li H Sci Rep; 2019 Oct; 9(1):15291. PubMed ID: 31653926 [TBL] [Abstract][Full Text] [Related]
10. Wang L; Guan H; Hu J; Feng Y; Li X; Yusef KK; Gao H; Tian D J Agric Food Chem; 2022 Sep; 70(35):10738-10746. PubMed ID: 36027054 [TBL] [Abstract][Full Text] [Related]
11. Lead bioimmobilization in contaminated mine soil by Aspergillus niger SANRU. Jalili B; Sadegh-Zadeh F; Jabari-Giashi M; Emadi M J Hazard Mater; 2020 Jul; 393():122375. PubMed ID: 32120215 [TBL] [Abstract][Full Text] [Related]
12. Phosphatase-mediated bioprecipitation of lead by soil fungi. Liang X; Kierans M; Ceci A; Hillier S; Gadd GM Environ Microbiol; 2016 Jan; 18(1):219-31. PubMed ID: 26235107 [TBL] [Abstract][Full Text] [Related]
13. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida. Topolska J; Latowski D; Kaschabek S; Manecki M; Merkel BJ; Rakovan J Environ Sci Pollut Res Int; 2014 Jan; 21(2):1079-89. PubMed ID: 23872890 [TBL] [Abstract][Full Text] [Related]
14. Rare Earth Extraction from Phosphogypsum by Zhang J; Zhang X; Su X; Du H; Lu Y; Zhang Q Molecules; 2024 Mar; 29(6):. PubMed ID: 38542902 [TBL] [Abstract][Full Text] [Related]
15. Phosphate solubilizing Aspergillus Niger PH1 ameliorates growth and alleviates lead stress in maize through improved photosynthetic and antioxidant response. Hussain I; Irshad M; Hussain A; Qadir M; Mehmood A; Rahman M; Alrefaei AF; Almutairi MH; Ali S; Hamayun M BMC Plant Biol; 2024 Jul; 24(1):642. PubMed ID: 38972980 [TBL] [Abstract][Full Text] [Related]
16. Remediation of Lead-Contaminated Water by Red Yeast and Different Types of Phosphate. Tian D; Cheng X; Wang L; Hu J; Zhou N; Xia J; Xu M; Zhang L; Gao H; Ye X; Zhang C Front Bioeng Biotechnol; 2022; 10():775058. PubMed ID: 35387302 [No Abstract] [Full Text] [Related]
17. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria. Qin S; Zhang H; He Y; Chen Z; Yao L; Han H Sci Total Environ; 2023 Apr; 868():161685. PubMed ID: 36682543 [TBL] [Abstract][Full Text] [Related]
18. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Li Z; Bai T; Dai L; Wang F; Tao J; Meng S; Hu Y; Wang S; Hu S Sci Rep; 2016 Apr; 6():25313. PubMed ID: 27126606 [TBL] [Abstract][Full Text] [Related]
19. Transformation of vanadinite [Pb5 (VO4 )3 Cl] by fungi. Ceci A; Rhee YJ; Kierans M; Hillier S; Pendlowski H; Gray N; Persiani AM; Gadd GM Environ Microbiol; 2015 Jun; 17(6):2018-34. PubMed ID: 25181352 [TBL] [Abstract][Full Text] [Related]