These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38740217)

  • 21. Factors of surface thermal variation in high-mountain lakes of the Pyrenees.
    Sabás I; Miró A; Piera J; Catalan J; Camarero L; Buchaca T; Ventura M
    PLoS One; 2021; 16(8):e0254702. PubMed ID: 34343195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An initial validation of Landsat 5 and 7 derived surface water temperature for U.S. lakes, reservoirs, and estuaries.
    Schaeffer BA; Iiames J; Dwyer J; Urquhart E; Salls W; Rover J; Seegers B
    Int J Remote Sens; 2018 May; 39(22):7789-7805. PubMed ID: 36419964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating climate change impacts on mountain lakes by applying the new silicification value to paleolimnological samples.
    Kuefner W; Hofmann AM; Geist J; Raeder U
    Sci Total Environ; 2020 May; 715():136913. PubMed ID: 32007888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term water temperature reconstructions from mountain lakes with different catchment and morphometric features.
    Luoto TP; Nevalainen L
    Sci Rep; 2013; 3():2488. PubMed ID: 23965988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning-based modeling of surface water temperature dynamics in arctic lakes.
    Kim HI; Kim D; Salamattalab MM; Mahdian M; Bateni SM; Noori R
    Environ Sci Pollut Res Int; 2024 Oct; 31(49):59642-59655. PubMed ID: 39361201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring.
    Boucher J; Weathers KC; Norouzi H; Steele B
    Ecol Appl; 2018 Jun; 28(4):1044-1054. PubMed ID: 29847690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variations in surface area and biogeochemistry of subarctic-arctic lakes established through satellite and in-situ observations: An overview of published research from the past 30 years.
    Zhao R; Shang Y; Jacinthe PA; Li S; Liu G; Wen Z; Wang Z; Yang Q; Fang C; Song K
    Sci Total Environ; 2024 Jun; 931():172797. PubMed ID: 38679084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.
    Dörnhöfer K; Klinger P; Heege T; Oppelt N
    Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of global change on two tropical, high mountain lakes in Central Mexico.
    Ibarra-Morales D; Silva-Aguilera RA; Oseguera LA; Merino-Ibarra M; Alcocer J
    Sci Total Environ; 2022 Dec; 852():158521. PubMed ID: 36067862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of Landsat land surface temperature and vegetation indices for monitoring drought in the Salt Lake Basin Area, Turkey.
    Orhan O; Ekercin S; Dadaser-Celik F
    ScientificWorldJournal; 2014; 2014():142939. PubMed ID: 24587709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal overturn and stratification changes drive deep-water warming in one of Earth's largest lakes.
    Anderson EJ; Stow CA; Gronewold AD; Mason LA; McCormick MJ; Qian SS; Ruberg SA; Beadle K; Constant SA; Hawley N
    Nat Commun; 2021 Mar; 12(1):1688. PubMed ID: 33727551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal regimes of Rocky Mountain lakes warm with climate change.
    Roberts JJ; Fausch KD; Schmidt TS; Walters DM
    PLoS One; 2017; 12(7):e0179498. PubMed ID: 28683083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981-2015.
    Liu B; Wan W; Xie H; Li H; Zhu S; Zhang G; Wen L; Hong Y
    Sci Data; 2019 May; 6(1):48. PubMed ID: 31048686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent and historical pollution legacy in high altitude Lake Marboré (Central Pyrenees): A record of mining and smelting since pre-Roman times in the Iberian Peninsula.
    Corella JP; Sierra MJ; Garralón A; Millán R; Rodríguez-Alonso J; Mata MP; de Vera AV; Moreno A; González-Sampériz P; Duval B; Amouroux D; Vivez P; Cuevas CA; Adame JA; Wilhelm B; Saiz-Lopez A; Valero-Garcés BL
    Sci Total Environ; 2021 Jan; 751():141557. PubMed ID: 32882549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global warming induces the succession of photosynthetic microbial communities in a glacial lake on the Tibetan Plateau.
    Ouyang J; Wu H; Yang H; Wang J; Liu J; Tong Y; Wang D; Huang M
    Water Res; 2023 Aug; 242():120213. PubMed ID: 37354841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees.
    Santolaria Z; Arruebo T; Urieta JS; Lanaja FJ; Pardo A; Matesanz J; Rodriguez-Casals C
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):231-47. PubMed ID: 25060309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A unified model for high resolution mapping of global lake (>1 ha) clarity using Landsat imagery data.
    Song K; Wang Q; Liu G; Jacinthe PA; Li S; Tao H; Du Y; Wen Z; Wang X; Guo W; Wang Z; Shi K; Du J; Shang Y; Lyu L; Hou J; Zhang B; Cheng S; Lyu Y; Fei L
    Sci Total Environ; 2022 Mar; 810():151188. PubMed ID: 34710411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009.
    Sharma S; Gray DK; Read JS; O'Reilly CM; Schneider P; Qudrat A; Gries C; Stefanoff S; Hampton SE; Hook S; Lenters JD; Livingstone DM; McIntyre PB; Adrian R; Allan MG; Anneville O; Arvola L; Austin J; Bailey J; Baron JS; Brookes J; Chen Y; Daly R; Dokulil M; Dong B; Ewing K; de Eyto E; Hamilton D; Havens K; Haydon S; Hetzenauer H; Heneberry J; Hetherington AL; Higgins SN; Hixson E; Izmest'eva LR; Jones BM; Kangur K; Kasprzak P; Köster O; Kraemer BM; Kumagai M; Kuusisto E; Leshkevich G; May L; MacIntyre S; Müller-Navarra D; Naumenko M; Noges P; Noges T; Niederhauser P; North RP; Paterson AM; Plisnier PD; Rigosi A; Rimmer A; Rogora M; Rudstam L; Rusak JA; Salmaso N; Samal NR; Schindler DE; Schladow G; Schmidt SR; Schultz T; Silow EA; Straile D; Teubner K; Verburg P; Voutilainen A; Watkinson A; Weyhenmeyer GA; Williamson CE; Woo KH
    Sci Data; 2015; 2():150008. PubMed ID: 25977814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metals and metalloids in high-altitude Pyrenean lakes: sources and distribution in pre-industrial and modern sediments.
    Rodriguez-Iruretagoiena A; Gredilla A; de Vallejuelo SF; Arana G; Meaurio M; Madariaga JM; Auguet JC; González AG; Pokrovsky OS; Camarero L; de Diego A
    Environ Sci Pollut Res Int; 2023 Aug; 30(37):87561-87574. PubMed ID: 37428320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate change drives rapid warming and increasing heatwaves of lakes.
    Wang X; Shi K; Zhang Y; Qin B; Zhang Y; Wang W; Woolway RI; Piao S; Jeppesen E
    Sci Bull (Beijing); 2023 Jul; 68(14):1574-1584. PubMed ID: 37429775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.