These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38740251)

  • 1. Efficacy of sintered Zinc-doped fluorapatite scaffold as an antimicrobial regenerative bone filler for dental applications.
    Steyl SK; Jeyapalina S; Griffin A; Krishnamoorthi V; Beck JP; Agarwal J; Shea J
    J Dent; 2024 Jul; 146():105070. PubMed ID: 38740251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sintered fluorapatite scaffolds as an autograft-like engineered bone graft.
    Nielson C; Agarwal J; Beck JP; Shea J; Jeyapalina S
    J Biomed Mater Res B Appl Biomater; 2024 Feb; 112(2):e35374. PubMed ID: 38359170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorapatite-modified scaffold on dental pulp stem cell mineralization.
    Guo T; Li Y; Cao G; Zhang Z; Chang S; Czajka-Jakubowska A; Nör JE; Clarkson BH; Liu J
    J Dent Res; 2014 Dec; 93(12):1290-5. PubMed ID: 25139361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regenerative effect of microcarrier form of acellular dermal matrix versus bone matrix bio-scaffolds loaded with adipose stem cells on rat bone defect.
    Aboulkhair AG; AboZeid AA; Beherei HH; Kamar SS
    Ann Anat; 2024 Feb; 252():152203. PubMed ID: 38128745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strontium-releasing fluorapatite glass-ceramic scaffolds: Structural characterization and in vivo performance.
    Denry I; Goudouri OM; Fredericks DC; Akkouch A; Acevedo MR; Holloway JA
    Acta Biomater; 2018 Jul; 75():463-471. PubMed ID: 29859366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model.
    Fan J; Park H; Lee MK; Bezouglaia O; Fartash A; Kim J; Aghaloo T; Lee M
    Tissue Eng Part A; 2014 Aug; 20(15-16):2169-79. PubMed ID: 24524819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.
    Rodriguez RU; Kemper N; Breathwaite E; Dutta SM; Hsu EL; Hsu WK; Francis MP
    Biofabrication; 2016 Jul; 8(3):035007. PubMed ID: 27458901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenchymal stem cell-derived microvesicles mediate BMP2 gene delivery and enhance bone regeneration.
    Liang Z; Luo Y; Lv Y
    J Mater Chem B; 2020 Aug; 8(30):6378-6389. PubMed ID: 32633309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins.
    Hong JM; Kim BJ; Shim JH; Kang KS; Kim KJ; Rhie JW; Cha HJ; Cho DW
    Acta Biomater; 2012 Jul; 8(7):2578-86. PubMed ID: 22480947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sol-gel based synthesis and biological properties of zinc integrated nano bioglass ceramics for bone tissue regeneration.
    Paramita P; Ramachandran M; Narashiman S; Nagarajan S; Sukumar DK; Chung TW; Ambigapathi M
    J Mater Sci Mater Med; 2021 Jan; 32(1):5. PubMed ID: 33471255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical group-dependent plasma polymerisation preferentially directs adipose stem cell differentiation towards osteogenic or chondrogenic lineages.
    Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P
    Acta Biomater; 2017 Mar; 50():450-461. PubMed ID: 27956359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Printed Titanium Scaffolds Enhance Osteogenic Differentiation and New Bone Formation by Cultured Adipose Tissue-Derived Stem Cells Through the IGF-1R/AKT/Mammalian Target of Rapamycin Complex 1 (mTORC1) Pathway.
    Zhou X; Zhang D; Wang M; Zhang D; Xu Y
    Med Sci Monit; 2019 Oct; 25():8043-8054. PubMed ID: 31655847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delivery of Phenamil Enhances BMP-2-Induced Osteogenic Differentiation of Adipose-Derived Stem Cells and Bone Formation in Calvarial Defects.
    Fan J; Im CS; Cui ZK; Guo M; Bezouglaia O; Fartash A; Lee JY; Nguyen J; Wu BM; Aghaloo T; Lee M
    Tissue Eng Part A; 2015 Jul; 21(13-14):2053-65. PubMed ID: 25869476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorapatite and fluorohydroxyapatite apatite surfaces drive adipose-derived stem cells to an osteogenic lineage.
    Jeyapalina S; Hillas E; Beck JP; Agarwal J; Shea J
    J Mech Behav Biomed Mater; 2022 Jan; 125():104950. PubMed ID: 34740011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of mixtures of uncultured freshly isolated adipose-derived stem cells and demineralized bone matrix for bone regeneration in a rat critically sized calvarial defect model.
    Rhee SC; Ji YH; Gharibjanian NA; Dhong ES; Park SH; Yoon ES
    Stem Cells Dev; 2011 Feb; 20(2):233-42. PubMed ID: 20528145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo.
    Zhu DY; Lu B; Yin JH; Ke QF; Xu H; Zhang CQ; Guo YP; Gao YS
    Int J Nanomedicine; 2019; 14():1085-1100. PubMed ID: 30804672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VEGF promotes osteogenic differentiation of ASCs on ordered fluorapatite surfaces.
    Clark D; Wang X; Chang S; Czajka-Jakubowska A; Clarkson BH; Liu J
    J Biomed Mater Res A; 2015 Feb; 103(2):639-45. PubMed ID: 24797761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.