These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38740340)
1. Influence of Pteris vittata-maize intercropping on plant agronomic parameters and soil arsenic remediation. Wan T; Dong X; Yu L; Li D; Han H; Tu S; Wan J Chemosphere; 2024 Jul; 359():142331. PubMed ID: 38740340 [TBL] [Abstract][Full Text] [Related]
2. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Ma J; Lei E; Lei M; Liu Y; Chen T Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933 [TBL] [Abstract][Full Text] [Related]
3. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil. Wan X; Lei M; Chen T; Yang J Sci Total Environ; 2017 Feb; 579():1467-1475. PubMed ID: 27908626 [TBL] [Abstract][Full Text] [Related]
4. Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production. Zeng W; Wan X; Lei M; Chen T Sci Total Environ; 2024 Mar; 915():170074. PubMed ID: 38218467 [TBL] [Abstract][Full Text] [Related]
5. Potential evaluation of different intercropping remediation modes based on remediation efficiency and economic benefits - a case study of arsenic-contaminated soil. Yan Y; Yang J; Guo Y; Yang J; Wan X; Zhao C; Guo J; Chen T Int J Phytoremediation; 2022; 24(1):25-33. PubMed ID: 33998931 [TBL] [Abstract][Full Text] [Related]
6. Intercropped Amygdalus persica and Pteris vittata applied with additives presents a safe utilization and remediation mode for arsenic-contaminated orchard soil. Li Y; Yang J; Guo J; Zheng G; Chen T; Meng X; He M; Ma C Sci Total Environ; 2023 Jun; 879():163034. PubMed ID: 36990239 [TBL] [Abstract][Full Text] [Related]
7. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and Citrus reticulata Blanco intercropping. Yan Y; Yang J; Wan X; Shi H; Yang J; Ma C; Lei M; Chen T Sci Total Environ; 2022 Mar; 812():152475. PubMed ID: 34952060 [TBL] [Abstract][Full Text] [Related]
8. Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba. Wan X; Lei M Environ Sci Pollut Res Int; 2018 May; 25(13):12600-12611. PubMed ID: 29468391 [TBL] [Abstract][Full Text] [Related]
9. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: comprehensive evaluation of remediation efficiency correcting for atmospheric depositions. Lei M; Wan X; Guo G; Yang J; Chen T Environ Sci Pollut Res Int; 2018 Jan; 25(1):124-131. PubMed ID: 27928750 [TBL] [Abstract][Full Text] [Related]
10. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations. Wang W; Yang X; Mo Q; Li Y; Meng D; Li H Ecotoxicol Environ Saf; 2023 Jul; 259():115004. PubMed ID: 37196521 [TBL] [Abstract][Full Text] [Related]
11. Responses of diversity and arsenic-transforming functional genes of soil microorganisms to arsenic hyperaccumulator (Pteris vittata L.)/pomegranate (Punica granatum L.) intercropping. Zhang D; Lei M; Wan X; Guo G; Zhao X; Liu Y Sci Total Environ; 2022 Dec; 850():157767. PubMed ID: 35926620 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Ye WL; Khan MA; McGrath SP; Zhao FJ Environ Pollut; 2011 Dec; 159(12):3739-43. PubMed ID: 21840633 [TBL] [Abstract][Full Text] [Related]
13. [Plant growth and Cd accumulation characteristics in different planting modes of maize and Amaranthus hypochondriacus.]. Guo N; Chi GY; Shi Y; Chen X Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):3164-3174. PubMed ID: 31529892 [TBL] [Abstract][Full Text] [Related]
14. Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice. Huang SY; Zhuo C; Du XY; Li HS Int J Phytoremediation; 2021; 23(10):1021-1029. PubMed ID: 33491468 [TBL] [Abstract][Full Text] [Related]
15. Remediation effect and mechanism of low-As-accumulating maize and peanut intercropping for safe-utilization of As-contaminated soil. Li Y; Liang D; Li B; Wang W; Li H Int J Phytoremediation; 2023; 25(14):1956-1966. PubMed ID: 37191287 [TBL] [Abstract][Full Text] [Related]
16. Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulator Pteris vittata by upregulating phosphorus transporters. Liu X; Feng HY; Fu JW; Sun D; Cao Y; Chen Y; Xiang P; Liu Y; Ma LQ Environ Pollut; 2018 Oct; 241():240-246. PubMed ID: 29807282 [TBL] [Abstract][Full Text] [Related]
17. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L. Yan X; Zhang M; Liao X; Tu S Chemosphere; 2012 Jun; 88(2):240-4. PubMed ID: 22463947 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield. Mandal A; Purakayastha TJ; Patra AK; Sanyal SK Int J Phytoremediation; 2012 Jul; 14(6):621-8. PubMed ID: 22908631 [TBL] [Abstract][Full Text] [Related]
19. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Danh LT; Truong P; Mammucari R; Foster N Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227 [TBL] [Abstract][Full Text] [Related]
20. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Liu X; Fu JW; Tang N; da Silva EB; Cao Y; Turner BL; Chen Y; Ma LQ Environ Pollut; 2017 Jul; 226():212-218. PubMed ID: 28432964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]