These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3874060)

  • 1. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Mechanism for transfer of the phosphoryl group from phosphoenolpyruvate to fructose.
    Lolkema JS; ten Hoeve-Duurkens RH; Robillard GT
    Eur J Biochem; 1985 Jun; 149(3):625-31. PubMed ID: 3874060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Energetics of the phosphoryl group transfer from phosphoenolpyruvate to fructose.
    Lolkema JS; ten Hoeve-Duurkens RH; Robillard GT
    Eur J Biochem; 1986 Jan; 154(2):387-93. PubMed ID: 3484702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoenolpyruvate-dependent fructose phosphotransferase system in Rhodopseudomonas sphaeroides. The coupling between transport and phosphorylation in inside-out vesicles.
    Lolkema JS; Robillard GT
    Eur J Biochem; 1985 Feb; 147(1):69-75. PubMed ID: 3871694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: purification and physicochemical and immunochemical characterization of a membrane-associated enzyme I.
    Brouwer M; Elferink MG; Robillard GT
    Biochemistry; 1982 Jan; 21(1):82-8. PubMed ID: 6277369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Evidence for a shift in the midpoint potential of the dithiol redox center during turnover of the carrier.
    Lolkema JS; Robillard GT
    Eur J Biochem; 1986 Aug; 159(1):141-7. PubMed ID: 3488904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of a phosphoryl exchange reaction between fructose and fructose 1-phosphate catalyzed by the membrane-bound enzyme II of the phosphoenolpyruvate-fructose 1-phosphotransferase system of Bacillus subtilis.
    Perret J; Gay P
    Eur J Biochem; 1979 Dec; 102(1):237-46. PubMed ID: 118007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Details of mannitol transport in Escherichia coli elucidated by site-specific mutagenesis and complementation of phosphorylation site mutants of the phosphoenolpyruvate-dependent mannitol-specific phosphotransferase system.
    van Weeghel RP; van der Hoek YY; Pas HH; Elferink M; Keck W; Robillard GT
    Biochemistry; 1991 Feb; 30(7):1768-73. PubMed ID: 1899620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of the phosphoenolpyruvate:mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus.
    Chaillou S; Postma PW; Pouwels PH
    Microbiology (Reading); 2001 Mar; 147(Pt 3):671-679. PubMed ID: 11238974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phosphoenolpyruvate:mannose phosphotransferase system of Streptococcus salivarius. Functional and biochemical characterization of IIABL(Man) and IIABH(Man).
    Pelletier M; Lortie LA; Frenette M; Vadeboncoeur C
    Biochemistry; 1998 Feb; 37(6):1604-12. PubMed ID: 9484231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. EIIFru possesses a Zn2+-binding site and a dithiol/disulfide redox centre.
    Lolkema JS; ten Hoeve-Duurkens RH; Robillard GT
    Eur J Biochem; 1986 Feb; 154(3):651-6. PubMed ID: 3948872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanism of the transmembrane sugar translocation and phosphorylation.
    Misset O; Blaauw M; Postma PW; Robillard GT
    Biochemistry; 1983 Dec; 22(26):6163-70. PubMed ID: 6362721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: mechanism of phosphoryl-group transfer from phosphoenolpyruvate to HPr.
    Misset O; Robillard GT
    Biochemistry; 1982 Jun; 21(13):3136-42. PubMed ID: 7049237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: mannitol-specific EII contains two phosphoryl binding sites per monomer and one high-affinity mannitol binding site per dimer.
    Pas HH; ten Hoeve-Duurkens RH; Robillard GT
    Biochemistry; 1988 Jul; 27(15):5520-5. PubMed ID: 3140890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional reconstitution of the purified phosphoenolpyruvate-dependent mannitol-specific transport system of Escherichia coli in phospholipid vesicles: coupling between transport and phosphorylation.
    Elferink MG; Driessen AJ; Robillard GT
    J Bacteriol; 1990 Dec; 172(12):7119-25. PubMed ID: 2123863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: equilibrium kinetics and mechanism of enzyme i phosphorylation.
    Hoving H; Lolkema JS; Robillard GT
    Biochemistry; 1981 Jan; 20(1):87-93. PubMed ID: 7008836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar recognition by the glucose and mannose permeases of Escherichia coli. Steady-state kinetics and inhibition studies.
    GarcĂ­a-Alles LF; Zahn A; Erni B
    Biochemistry; 2002 Aug; 41(31):10077-86. PubMed ID: 12146972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of growth conditions on levels of components of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans and Streptococcus sobrinus grown in continuous culture.
    Vadeboncoeur C; Thibault L; Neron S; Halvorson H; Hamilton IR
    J Bacteriol; 1987 Dec; 169(12):5686-91. PubMed ID: 3680174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system.
    Deutscher J; Sauerwald H
    J Bacteriol; 1986 Jun; 166(3):829-36. PubMed ID: 3011747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated Regulation of the EII
    Zeng L; Chakraborty B; Farivar T; Burne RA
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of an inducible enzyme II fructose and activation of a cryptic enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass form of IIIman, a component of the phosphoenolpyruvate:mannose phosphotransferase system.
    Bourassa S; Vadeboncoeur C
    J Gen Microbiol; 1992 Apr; 138(4):769-77. PubMed ID: 1534118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.