These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3874060)

  • 41. Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium.
    Scholte BJ; Postma PW
    Eur J Biochem; 1981; 114(1):51-8. PubMed ID: 7011803
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The bacterial phosphotransferase system: kinetic characterization of the glucose, mannitol, glucitol, and N-acetylglucosamine systems.
    Grenier FC; Waygood EB; Saier MH
    J Cell Biochem; 1986; 31(2):97-105. PubMed ID: 3015992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphoryl exchange reaction catalyzed by enzyme I of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Kinetic characterization.
    Saier MH; Schmidt MR; Lin P
    J Biol Chem; 1980 Sep; 255(18):8579-84. PubMed ID: 6997300
    [No Abstract]   [Full Text] [Related]  

  • 44. Evidence for the existence of a channel in the glucose-specific carrier EIIGlc of the Salmonella typhimurium phosphoenolpyruvate-dependent phosphotransferase system.
    Robillard GT; Beechey RB
    Biochemistry; 1986 Mar; 25(6):1346-54. PubMed ID: 3516221
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system. In vitro intragenic complementation: the roles of Arg126 in phosphoryl transfer and the C-terminal domain in dimerization.
    Brokx SJ; Talbot J; Georges F; Waygood EB
    Biochemistry; 2000 Apr; 39(13):3624-35. PubMed ID: 10736161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insight into the phosphoryl transfer of the Escherichia coli glucose phosphotransferase system from QM/MM simulations.
    Jardin C; Horn AH; Schürer G; Sticht H
    J Phys Chem B; 2008 Oct; 112(42):13391-400. PubMed ID: 18816086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria.
    Saier MH; Feucht BU; Roseman S
    J Biol Chem; 1971 Dec; 246(24):7819-21. PubMed ID: 5002684
    [No Abstract]   [Full Text] [Related]  

  • 48. Studies on the mechanism of phosphorylation and transport of beta-galactosides by the lactose phosphotransferase system of Staphylococcus aureus. Kinetic investigations using tosyl galactosides as reversible dead-end inhibitors.
    Hays JB; Sussman ML
    Biochim Biophys Acta; 1976 Aug; 443(2):267-83. PubMed ID: 953019
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The phosphoenolpyruvate:glucose phosphotransferase system of Salmonella typhimurium. The phosphorylated form of IIIGlc.
    Nelson SO; Schuitema AR; Postma PW
    Eur J Biochem; 1986 Jan; 154(2):337-41. PubMed ID: 3510871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Distribution of EIIFru over the membranes of phototrophically grown Rps. sphaeroides.
    Lolkema JS; ten Hoeve-Duurkens RH; Robillard GT
    Eur J Biochem; 1986 Nov; 161(1):211-5. PubMed ID: 3023083
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme IIImtl of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme IImtl of Escherichia coli.
    Reiche B; Frank R; Deutscher J; Meyer N; Hengstenberg W
    Biochemistry; 1988 Aug; 27(17):6512-6. PubMed ID: 3064811
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes.
    Deutscher J; Saier MH
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6790-4. PubMed ID: 6359157
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a phosphoenolpyruvate:fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes.
    Mitchell WJ; Reizer J; Herring C; Hoischen C; Saier MH
    J Bacteriol; 1993 May; 175(9):2758-61. PubMed ID: 8478337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glucose-specific permease of the bacterial phosphotransferase system: phosphorylation and oligomeric structure of the glucose-specific IIGlc-IIIGlc complex of Salmonella typhimurium.
    Erni B
    Biochemistry; 1986 Jan; 25(2):305-12. PubMed ID: 3513827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system.
    Begley GS; Hansen DE; Jacobson GR; Knowles JR
    Biochemistry; 1982 Oct; 21(22):5552-6. PubMed ID: 6756472
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: role of divalent metals in the dimerization and phosphorylation of enzyme I.
    Hoving H; Koning JH; Robillard GT
    Biochemistry; 1982 Jun; 21(13):3128-36. PubMed ID: 7049236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The bacterial phosphoenolpyruvate dependent phosphotransferase system (PTS): solubilisation and kinetic parameters of the glucose-specific membrane bound enzyme II component of Streptococcus faecalis.
    Hüdig H; Hengstenberg W
    FEBS Lett; 1980 May; 114(1):103-6. PubMed ID: 6769709
    [No Abstract]   [Full Text] [Related]  

  • 58. Evidence of a glucose proton motive force-dependent permease and a fructose phosphoenolpyruvate:phosphotransferase transport system in Lactobacillus reuteri CRL 1098.
    Taranto MP; Font de Valdez G; Perez-Martinez G
    FEMS Microbiol Lett; 1999 Dec; 181(1):109-12. PubMed ID: 10564795
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay.
    Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT
    Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lactose-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus. Purification of the histidine-tagged transmembrane component IICBLac and its hydrophilic IIB domain by metal-affinity chromatography, and functional characterization.
    Peters D; Frank R; Hengstenberg W
    Eur J Biochem; 1995 Mar; 228(3):798-804. PubMed ID: 7737179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.