These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38740756)

  • 1. Ultra-narrowband and rainbow-free mid-infrared thermal emitters enabled by a flat band design in distorted photonic lattices.
    Sun K; Cai Y; Huang L; Han Z
    Nat Commun; 2024 May; 15(1):4019. PubMed ID: 38740756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting Zone-Folding Induced Quasi-Bound Modes to Achieve Highly Coherent Thermal Emissions.
    Sun K; Levy U; Han Z
    Nano Lett; 2024 Jan; 24(2):764-769. PubMed ID: 38166141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrowband mid-infrared thermal emitters based on the Fabry-Perot type of bound states in the continuum.
    Li X; Maqbool E; Han Z
    Opt Express; 2023 Jun; 31(12):20338-20344. PubMed ID: 37381430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Q optical resonances with robustness based on the quasi-guided modes in waveguide moiré gratings.
    Wang G; Maqbool E; Han Z
    Opt Express; 2024 Jan; 32(3):4720-4727. PubMed ID: 38297666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations.
    Sun K; Cai Y; Levy U; Han Z
    Beilstein J Nanotechnol; 2023; 14():322-328. PubMed ID: 36925612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance.
    Guo Y; Fan S
    Opt Express; 2016 Dec; 24(26):29896-29907. PubMed ID: 28059374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.
    Liu Z; Liu G; Liu X; Huang S; Wang Y; Pan P; Liu M
    Nanotechnology; 2015 Jun; 26(23):235702. PubMed ID: 25987526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon photonic crystal thermal emitter at near-infrared wavelengths.
    O'Regan BJ; Wang Y; Krauss TF
    Sci Rep; 2015 Aug; 5():13415. PubMed ID: 26293111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Brillouin Zones by In-Plane Lasing from Light-Cone Surface Lattice Resonances.
    Guan J; Bourgeois MR; Li R; Hu J; Schaller RD; Schatz GC; Odom TW
    ACS Nano; 2021 Mar; 15(3):5567-5573. PubMed ID: 33689315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Narrow Bandwidth Microwave Photonic Filter Implemented by Single Longitudinal Mode Parity Time Symmetry Brillouin Fiber Laser.
    Hou J; You Y; Liu Y; Jiang K; Han X; He W; Geng W; Liu Y; Chou X
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material.
    Alfaro-Mozaz FJ; Rodrigo SG; Alonso-González P; Vélez S; Dolado I; Casanova F; Hueso LE; Martín-Moreno L; Hillenbrand R; Nikitin AY
    Nat Commun; 2019 Jan; 10(1):42. PubMed ID: 30604741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the Spectral and Spatial Dispersion of Thermal Emission via Polariton-Phonon Strong Coupling.
    Lu G; Gubbin CR; Nolen JR; Folland T; Tadjer MJ; De Liberato S; Caldwell JD
    Nano Lett; 2021 Feb; 21(4):1831-1838. PubMed ID: 33587855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical demonstration of CO
    Cardador Maza D; Segura Garcia D; Deriziotis I; Garín M; Llorca J; Rodriguez A
    Opt Lett; 2019 Sep; 44(18):4535-4538. PubMed ID: 31517924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-efficient bandwidth enhancement of Brillouin microwave photonic bandpass filters.
    Raj P; Parihar R; Dhawan R; Choudhary A
    Opt Express; 2022 Aug; 30(17):30739-30749. PubMed ID: 36242172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral control of near-field thermal radiation via photonic band engineering of two-dimensional photonic crystal slabs.
    Inoue T; Asano T; Noda S
    Opt Express; 2018 Nov; 26(24):32074-32082. PubMed ID: 30650786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive terahertz fingerprint sensing based on the quasi-guided modes in a distorted photonic lattice.
    Sun M; Han Z
    Opt Express; 2023 Mar; 31(6):10947-10954. PubMed ID: 37157629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Q mid-infrared thermal emitters operating with high power-utilization efficiency.
    Inoue T; De Zoysa M; Asano T; Noda S
    Opt Express; 2016 Jun; 24(13):15101-9. PubMed ID: 27410661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultranarrow and Wavelength-Scalable Thermal Emitters Driven by High-Order Antiferromagnetic Resonances in Dielectric Nanogratings.
    Liu M; Zhao C
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25306-25315. PubMed ID: 34014072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.