These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38740799)

  • 1. Exploring the geometry of the bifurcation sets in parameter space.
    Barrio R; Ibáñez S; Pérez L
    Sci Rep; 2024 May; 14(1):10900. PubMed ID: 38740799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homoclinic organization in the Hindmarsh-Rose model: A three parameter study.
    Barrio R; Ibáñez S; Pérez L
    Chaos; 2020 May; 30(5):053132. PubMed ID: 32491901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hopf Bifurcations in Directed Acyclic Networks of Linearly Coupled Hindmarsh-Rose Systems.
    Corson N; Lanza V; Verdière N
    Acta Biotheor; 2016 Dec; 64(4):375-402. PubMed ID: 27695996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic behaviors of the FitzHugh-Nagumo neuron model with state-dependent impulsive effects.
    He Z; Li C; Chen L; Cao Z
    Neural Netw; 2020 Jan; 121():497-511. PubMed ID: 31655446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system.
    Desroches M; Krauskopf B; Osinga HM
    Chaos; 2008 Mar; 18(1):015107. PubMed ID: 18377088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model.
    Dtchetgnia Djeundam SR; Yamapi R; Kofane TC; Aziz-Alaoui MA
    Chaos; 2013 Sep; 23(3):033125. PubMed ID: 24089961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifurcation structure of two coupled FHN neurons with delay.
    Farajzadeh Tehrani N; Razvan M
    Math Biosci; 2015 Dec; 270(Pt A):41-56. PubMed ID: 26476143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons.
    Barrio R; Martínez MA; Serrano S; Shilnikov A
    Chaos; 2014 Jun; 24(2):023128. PubMed ID: 24985442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-tuned criticality: Controlling a neuron near its bifurcation point via temporal correlations.
    Moraes JT; Trejo EJA; Camargo S; Ferreira SC; Chialvo DR
    Phys Rev E; 2023 Mar; 107(3-1):034204. PubMed ID: 37072953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis of subcritical Hopf bifurcations in the two-dimensional FitzHugh-Nagumo model.
    Sehgal S; Foulkes AJ
    Phys Rev E; 2020 Jul; 102(1-1):012212. PubMed ID: 32795073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitor-Induced Wavetrains and Spiral Waves in an Extended FitzHugh-Nagumo Model of Nerve Cell Dynamics.
    Gani MO; Kabir MH; Ogawa T
    Bull Math Biol; 2022 Nov; 84(12):145. PubMed ID: 36350426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Information geometry theory of bifurcations? A covariant formulation.
    da Silva VB; Vieira JP; Leonel ED
    Chaos; 2022 Feb; 32(2):023119. PubMed ID: 35232048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Analysis of
    Marszalek W; Sadecki J; Walczak M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The emergence of polyglot entrainment responses to periodic inputs in vicinities of Hopf bifurcations in slow-fast systems.
    Khan E; Saghafi S; Diekman CO; Rotstein HG
    Chaos; 2022 Jun; 32(6):063137. PubMed ID: 35778129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-parameter bifurcations in LPA model.
    Hajnová V; Přibylová L
    J Math Biol; 2017 Nov; 75(5):1235-1251. PubMed ID: 28283740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Trivial Dynamics in the FizHugh-Rinzel Model and Non-Homogeneous Oscillatory-Excitable Reaction-Diffusions Systems.
    Ambrosio B; Aziz-Alaoui MA; Mondal A; Mondal A; Sharma SK; Upadhyay RK
    Biology (Basel); 2023 Jun; 12(7):. PubMed ID: 37508349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting transient dynamics in a model of reed musical instrument with slowly time-varying control parameter.
    Bergeot B; Terrien S; Vergez C
    Chaos; 2024 Jul; 34(7):. PubMed ID: 39042504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Period-adding bifurcation and chaos in a hybrid Hindmarsh-Rose model.
    Yang Y; Liao X; Dong T
    Neural Netw; 2018 Sep; 105():26-35. PubMed ID: 29763742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system.
    Akman OE; Broomhead DS; Abadi RV; Clement RA
    J Math Biol; 2005 Dec; 51(6):661-94. PubMed ID: 15940536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turing-Hopf patterns on growing domains: The torus and the sphere.
    Sánchez-Garduño F; Krause AL; Castillo JA; Padilla P
    J Theor Biol; 2019 Nov; 481():136-150. PubMed ID: 30266461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.