These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38741470)

  • 1. Discrimination of Aspartic and Isoaspartic Acid Residues in Peptides by Tandem Mass Spectrometry with Hydrogen Attachment Dissociation.
    Asakawa D; Iwamoto S; Tanaka K
    Anal Chem; 2024 May; 96(21):8552-8559. PubMed ID: 38741470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unequivocal Identification of Aspartic Acid and
    Hui JO; Flick T; Loo JA; Campuzano IDG
    J Am Soc Mass Spectrom; 2021 Aug; 32(8):1901-1909. PubMed ID: 33390012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiating N-terminal aspartic and isoaspartic acid residues in peptides.
    Sargaeva NP; Lin C; O'Connor PB
    Anal Chem; 2011 Sep; 83(17):6675-82. PubMed ID: 21736361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of Aspartic and Isoaspartic Acid Using 193 nm Ultraviolet Photodissociation Mass Spectrometry.
    Bashyal A; Hui JO; Flick T; Dykstra AB; Zhang Q; Campuzano IDG; Brodbelt JS
    Anal Chem; 2023 Aug; 95(30):11510-11517. PubMed ID: 37458293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS).
    Edwards HM; Wu HT; Julian RR; Jackson GP
    Analyst; 2022 Mar; 147(6):1159-1168. PubMed ID: 35188507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of aspartic and isoaspartic acid residues in amyloid beta peptides, including Abeta1-42, using electron-ion reactions.
    Sargaeva NP; Lin C; O'Connor PB
    Anal Chem; 2009 Dec; 81(23):9778-86. PubMed ID: 19873993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Asp isomerization in proteins by ¹⁸O labeling and tandem mass spectrometry.
    Zhang J; Katta V
    Methods Mol Biol; 2012; 899():365-77. PubMed ID: 22735965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-Phase Peptide Fragmentation Induced by Hydrogen Attachment, from Principle to Sequencing of Amide Nitrogen-Methylated Peptides.
    Asakawa D; Takahashi H; Iwamoto S; Tanaka K
    Anal Chem; 2020 Dec; 92(24):15773-15780. PubMed ID: 33256396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative analysis of spontaneous isoaspartate formation from N-terminal asparaginyl and aspartyl residues.
    Güttler BH; Cynis H; Seifert F; Ludwig HH; Porzel A; Schilling S
    Amino Acids; 2013 Apr; 44(4):1205-14. PubMed ID: 23344882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry.
    Lehmann WD; Schlosser A; Erben G; Pipkorn R; Bossemeyer D; Kinzel V
    Protein Sci; 2000 Nov; 9(11):2260-8. PubMed ID: 11152137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward proteome-scale identification and quantification of isoaspartyl residues in biological samples.
    Yang H; Fung EY; Zubarev AR; Zubarev RA
    J Proteome Res; 2009 Oct; 8(10):4615-21. PubMed ID: 19663459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonenzymatic Posttranslational Modifications and Peptide Cleavages Observed in Peptide Epimers.
    Long CC; Antevska A; Mast DH; Okyem S; Sweedler JV; Do TD
    J Am Soc Mass Spectrom; 2023 Sep; 34(9):1898-1907. PubMed ID: 37102735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interconversion of the peptide isoforms of aspartate: stability of isoaspartates.
    Hooi MY; Raftery MJ; Truscott RJ
    Mech Ageing Dev; 2013 Mar; 134(3-4):103-9. PubMed ID: 23385093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of isoaspartic Acid by selective proteolysis with Asp-N and electron transfer dissociation mass spectrometry.
    Ni W; Dai S; Karger BL; Zhou ZS
    Anal Chem; 2010 Sep; 82(17):7485-91. PubMed ID: 20712325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isomerization of Asp is essential for assembly of amyloid-like fibrils of αA-crystallin-derived peptide.
    Magami K; Hachiya N; Morikawa K; Fujii N; Takata T
    PLoS One; 2021; 16(4):e0250277. PubMed ID: 33857260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation.
    Cournoyer JJ; Pittman JL; Ivleva VB; Fallows E; Waskell L; Costello CE; O'Connor PB
    Protein Sci; 2005 Feb; 14(2):452-63. PubMed ID: 15659375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Rapid Aspartic Acid Isomer Localization in Therapeutic Peptides Using Cyclic Ion Mobility Mass Spectrometry.
    Gibson K; Cooper-Shepherd DA; Pallister E; Inman SE; Jackson SE; Lindo V
    J Am Soc Mass Spectrom; 2022 Jul; 33(7):1204-1212. PubMed ID: 35609180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry.
    Hurtado PP; O'Connor PB
    Mass Spectrom Rev; 2012; 31(6):609-25. PubMed ID: 22322410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of aspartic and isoaspartic acids using electron transfer dissociation.
    O'Connor PB; Cournoyer JJ; Pitteri SJ; Chrisman PA; McLuckey SA
    J Am Soc Mass Spectrom; 2006 Jan; 17(1):15-19. PubMed ID: 16338146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PIMT-Mediated Labeling of l-Isoaspartic Acid with Tris Facilitates Identification of Isomerization Sites in Long-Lived Proteins.
    Silzel JW; Lambeth TR; Julian RR
    J Am Soc Mass Spectrom; 2022 Mar; 33(3):548-556. PubMed ID: 35113558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.