These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38741577)

  • 1. Benchmarking physics-informed frameworks for data-driven hyperelasticity.
    Taç V; Linka K; Sahli-Costabal F; Kuhl E; Tepole AB
    Comput Mech; 2024 Jan; 73(1):49-65. PubMed ID: 38741577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations.
    Tac V; Sahli Costabal F; Tepole AB
    Comput Methods Appl Mech Eng; 2022 Aug; 398():. PubMed ID: 38045634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations.
    Taç V; Rausch M; Costabal FS; Tepole AB
    Comput Methods Appl Mech Eng; 2023 Jun; 411():. PubMed ID: 37426992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue.
    Tac V; Sree VD; Rausch MK; Tepole AB
    Eng Comput; 2022 Oct; 38(5):4167-4182. PubMed ID: 38031587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated model discovery for muscle using constitutive recurrent neural networks.
    Wang LM; Linka K; Kuhl E
    J Mech Behav Biomed Mater; 2023 Sep; 145():106021. PubMed ID: 37473576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated model discovery for human brain using Constitutive Artificial Neural Networks.
    Linka K; St Pierre SR; Kuhl E
    Acta Biomater; 2023 Apr; 160():134-151. PubMed ID: 36736643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity.
    Roy AM; Bose R; Sundararaghavan V; Arróyave R
    Neural Netw; 2023 May; 162():472-489. PubMed ID: 36966712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-informed kernel function neural networks for solving partial differential equations.
    Fu Z; Xu W; Liu S
    Neural Netw; 2024 Apr; 172():106098. PubMed ID: 38199153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations.
    Liu Y; Cai L; Chen Y; Wang B
    Math Biosci Eng; 2022 Sep; 19(12):12866-12896. PubMed ID: 36654026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics-Informed Data-Driven Prediction of 2D Normal Strain Field in Concrete Structures.
    Pereira M; Glisic B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
    Markidis S
    Front Big Data; 2021; 4():669097. PubMed ID: 34870188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing neurodynamic approach with physics-informed neural networks for solving non-smooth convex optimization problems.
    Wu D; Lisser A
    Neural Netw; 2023 Nov; 168():419-430. PubMed ID: 37804745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs.
    Fabiani G; Galaris E; Russo L; Siettos C
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying heterogeneous micromechanical properties of biological tissues via physics-informed neural networks.
    Wu W; Daneker M; Turner KT; Jolley MA; Lu L
    ArXiv; 2024 Jul; ():. PubMed ID: 38745694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying constitutive parameters for complex hyperelastic materials using physics-informed neural networks.
    Song S; Jin H
    Soft Matter; 2024 Jul; ():. PubMed ID: 38954481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics.
    Wu W; Daneker M; Jolley MA; Turner KT; Lu L
    Appl Math Mech; 2023 Jul; 44(7):1039-1068. PubMed ID: 37501681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.