These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38742379)

  • 1. Comprehensive analysis of clinical images contributions for melanoma classification using convolutional neural networks.
    Rios-Duarte JA; Diaz-Valencia AC; Combariza G; Feles M; Peña-Silva RA
    Skin Res Technol; 2024 May; 30(5):e13607. PubMed ID: 38742379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task.
    Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C;
    Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts.
    Haggenmüller S; Maron RC; Hekler A; Utikal JS; Barata C; Barnhill RL; Beltraminelli H; Berking C; Betz-Stablein B; Blum A; Braun SA; Carr R; Combalia M; Fernandez-Figueras MT; Ferrara G; Fraitag S; French LE; Gellrich FF; Ghoreschi K; Goebeler M; Guitera P; Haenssle HA; Haferkamp S; Heinzerling L; Heppt MV; Hilke FJ; Hobelsberger S; Krahl D; Kutzner H; Lallas A; Liopyris K; Llamas-Velasco M; Malvehy J; Meier F; Müller CSL; Navarini AA; Navarrete-Dechent C; Perasole A; Poch G; Podlipnik S; Requena L; Rotemberg VM; Saggini A; Sangueza OP; Santonja C; Schadendorf D; Schilling B; Schlaak M; Schlager JG; Sergon M; Sondermann W; Soyer HP; Starz H; Stolz W; Vale E; Weyers W; Zink A; Krieghoff-Henning E; Kather JN; von Kalle C; Lipka DB; Fröhling S; Hauschild A; Kittler H; Brinker TJ
    Eur J Cancer; 2021 Oct; 156():202-216. PubMed ID: 34509059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computerizing the first step of the two-step algorithm in dermoscopy: A convolutional neural network for differentiating melanocytic from non-melanocytic skin lesions.
    Winkler JK; Kommoss KS; Vollmer AS; Blum A; Stolz W; Kränke T; Hofmann-Wellenhof R; Enk A; Toberer F; Haenssle HA
    Eur J Cancer; 2024 Oct; 210():114297. PubMed ID: 39217816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
    Haenssle HA; Fink C; Schneiderbauer R; Toberer F; Buhl T; Blum A; Kalloo A; Hassen ABH; Thomas L; Enk A; Uhlmann L; ; Alt C; Arenbergerova M; Bakos R; Baltzer A; Bertlich I; Blum A; Bokor-Billmann T; Bowling J; Braghiroli N; Braun R; Buder-Bakhaya K; Buhl T; Cabo H; Cabrijan L; Cevic N; Classen A; Deltgen D; Fink C; Georgieva I; Hakim-Meibodi LE; Hanner S; Hartmann F; Hartmann J; Haus G; Hoxha E; Karls R; Koga H; Kreusch J; Lallas A; Majenka P; Marghoob A; Massone C; Mekokishvili L; Mestel D; Meyer V; Neuberger A; Nielsen K; Oliviero M; Pampena R; Paoli J; Pawlik E; Rao B; Rendon A; Russo T; Sadek A; Samhaber K; Schneiderbauer R; Schweizer A; Toberer F; Trennheuser L; Vlahova L; Wald A; Winkler J; Wölbing P; Zalaudek I
    Ann Oncol; 2018 Aug; 29(8):1836-1842. PubMed ID: 29846502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melanoma diagnosis using deep learning techniques on dermatoscopic images.
    Jojoa Acosta MF; Caballero Tovar LY; Garcia-Zapirain MB; Percybrooks WS
    BMC Med Imaging; 2021 Jan; 21(1):6. PubMed ID: 33407213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep neural networks are superior to dermatologists in melanoma image classification.
    Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS
    Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks.
    Maron RC; Weichenthal M; Utikal JS; Hekler A; Berking C; Hauschild A; Enk AH; Haferkamp S; Klode J; Schadendorf D; Jansen P; Holland-Letz T; Schilling B; von Kalle C; Fröhling S; Gaiser MR; Hartmann D; Gesierich A; Kähler KC; Wehkamp U; Karoglan A; Bär C; Brinker TJ;
    Eur J Cancer; 2019 Sep; 119():57-65. PubMed ID: 31419752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association between different scale bars in dermoscopic images and diagnostic performance of a market-approved deep learning convolutional neural network for melanoma recognition.
    Winkler JK; Sies K; Fink C; Toberer F; Enk A; Abassi MS; Fuchs T; Haenssle HA
    Eur J Cancer; 2021 Mar; 145():146-154. PubMed ID: 33465706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Past and present of computer-assisted dermoscopic diagnosis: performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions.
    Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Rosenberger A; Haenssle HA
    Eur J Cancer; 2020 Aug; 135():39-46. PubMed ID: 32534243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does sex matter? Analysis of sex-related differences in the diagnostic performance of a market-approved convolutional neural network for skin cancer detection.
    Sies K; Winkler JK; Fink C; Bardehle F; Toberer F; Buhl T; Enk A; Blum A; Stolz W; Rosenberger A; Haenssle HA
    Eur J Cancer; 2022 Mar; 164():88-94. PubMed ID: 35182926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced classifier training to improve precision of a convolutional neural network to identify images of skin lesions.
    Brinker TJ; Hekler A; Enk AH; von Kalle C
    PLoS One; 2019; 14(6):e0218713. PubMed ID: 31233565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.
    Alsaade FW; Aldhyani THH; Al-Adhaileh MH
    Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acral melanoma detection using a convolutional neural network for dermoscopy images.
    Yu C; Yang S; Kim W; Jung J; Chung KY; Lee SW; Oh B
    PLoS One; 2018; 13(3):e0193321. PubMed ID: 29513718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults.
    Dinnes J; Deeks JJ; Chuchu N; Ferrante di Ruffano L; Matin RN; Thomson DR; Wong KY; Aldridge RB; Abbott R; Fawzy M; Bayliss SE; Grainge MJ; Takwoingi Y; Davenport C; Godfrey K; Walter FM; Williams HC;
    Cochrane Database Syst Rev; 2018 Dec; 12(12):CD011902. PubMed ID: 30521682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior skin cancer classification by the combination of human and artificial intelligence.
    Hekler A; Utikal JS; Enk AH; Hauschild A; Weichenthal M; Maron RC; Berking C; Haferkamp S; Klode J; Schadendorf D; Schilling B; Holland-Letz T; Izar B; von Kalle C; Fröhling S; Brinker TJ;
    Eur J Cancer; 2019 Oct; 120():114-121. PubMed ID: 31518967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistency of convolutional neural networks in dermoscopic melanoma recognition: A prospective real-world study about the pitfalls of augmented intelligence.
    Goessinger EV; Cerminara SE; Mueller AM; Gottfrois P; Huber S; Amaral M; Wenz F; Kostner L; Weiss L; Kunz M; Maul JT; Wespi S; Broman E; Kaufmann S; Patpanathapillai V; Treyer I; Navarini AA; Maul LV
    J Eur Acad Dermatol Venereol; 2024 May; 38(5):945-953. PubMed ID: 38158385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions.
    Haenssle HA; Fink C; Toberer F; Winkler J; Stolz W; Deinlein T; Hofmann-Wellenhof R; Lallas A; Emmert S; Buhl T; Zutt M; Blum A; Abassi MS; Thomas L; Tromme I; Tschandl P; Enk A; Rosenberger A;
    Ann Oncol; 2020 Jan; 31(1):137-143. PubMed ID: 31912788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images.
    Nasiri S; Helsper J; Jung M; Fathi M
    BMC Bioinformatics; 2020 Mar; 21(Suppl 2):84. PubMed ID: 32164530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.