These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38742382)

  • 21. Effect of Metal Foam Mesh on Flame Propagation of Biomass-Derived Gas in a Half-Open Duct.
    Wang M; Wen X; Zhang S; Wang F; Zhu Q; Pan R; Ji W
    ACS Omega; 2020 Aug; 5(32):20643-20652. PubMed ID: 32832818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering.
    Engel SR; Koegler AF; Gao Y; Kilian D; Voigt M; Seeger T; Peukert W; Leipertz A
    Appl Opt; 2012 Sep; 51(25):6063-75. PubMed ID: 22945152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Fractal Structures by Spray Flame Synthesis Using X-ray Scattering.
    Simmler M; Meier M; Nirschl H
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stereoscopic high-speed imaging of iron microexplosions and nanoparticle-release.
    Li S; Sanned D; Huang J; Berrocal E; Cai W; Aldén M; Richter M; Li Z
    Opt Express; 2021 Oct; 29(21):34465-34476. PubMed ID: 34809236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lead (Pb
    Rajput S; Singh LP; Pittman CU; Mohan D
    J Colloid Interface Sci; 2017 Apr; 492():176-190. PubMed ID: 28088081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication.
    Teoh WY; Amal R; Mädler L
    Nanoscale; 2010 Aug; 2(8):1324-47. PubMed ID: 20820719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.
    Cao X; Ren J; Zhou Y; Wang Q; Gao X; Bi M
    J Hazard Mater; 2015 Mar; 285():311-8. PubMed ID: 25528229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Process Engineering to Increase the Layered Phase Concentration in the Immediate Products of Flame Spray Pyrolysis.
    Liang Y; Ku K; Lin Y; Yu L; Wen J; Lee E; Libera J; Lu J
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26915-26923. PubMed ID: 33908776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].
    Zhou XT; Wang JD; Li Y; Liu DB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):407-10. PubMed ID: 12961909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Jetting Dynamics of Burning Gel Fuel Droplets.
    Sharma J; Miglani A; John J; Nandagopalan P; Shaikh J; Kankar PK
    Gels; 2022 Nov; 8(12):. PubMed ID: 36547304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combustion of C
    Krug JD; Lemieux PM; Lee CW; Ryan JV; Kariher PH; Shields EP; Wickersham LC; Denison MK; Davis KA; Swensen DA; Burnette RP; Wendt JOL; Linak WP
    J Air Waste Manag Assoc; 2022 Mar; 72(3):256-270. PubMed ID: 34994684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CuO Quantum Dots Supported by SrTiO
    Yuan X; Meng L; Xu Z; Zheng C; Zhao H
    Environ Sci Technol; 2021 Oct; 55(20):14080-14086. PubMed ID: 34623148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transient reaction process and mechanism of cornstarch/air and CH
    Jing Q; Wang D; Liu Q; Shen Y; Wang Z; Chen X; Zhong Y
    J Hazard Mater; 2021 May; 409():124475. PubMed ID: 33187801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apparatus to investigate liquid oxygen droplet combustion in hydrogen under microgravity conditions.
    Meyer F; Eigenbrod C; Wagner V; Paa W; Hermanson JC
    Rev Sci Instrum; 2020 Oct; 91(10):105110. PubMed ID: 33138574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation.
    Nie B; He X; Zhang R; Chen W; Zhang J
    J Hazard Mater; 2011 Aug; 192(2):741-7. PubMed ID: 21704454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of methods for characterizing the fine particulate matter emissions from aircraft and other diffusion flame combustion aerosol sources.
    Giannelli R; Stevens J; Kinsey JS; Kittelson D; Zelenyuk A; Howard R; Forde M; Hoffman B; Leggett C; Maeroff B; Bies N; Swanson J; Suski K; Payne G; Manin J; Frazee R; Onasch TB; Freedman A; Khalek I; Badshah H; Preece D; Premnath V; Agnew S
    J Aerosol Sci; 2024 May; 178():1-20. PubMed ID: 38751612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy.
    Díaz-Visurraga J; Daza C; Pozo C; Becerra A; von Plessing C; García A
    Int J Nanomedicine; 2012; 7():3597-612. PubMed ID: 22848180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupled Mechanisms of Precipitation and Atomization in Burning Nanofluid Fuel Droplets.
    Miglani A; Basu S
    Sci Rep; 2015 Oct; 5():15008. PubMed ID: 26446366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The quantitative studies on gas explosion suppression by an inert rock dust deposit.
    Song Y; Zhang Q
    J Hazard Mater; 2018 Jul; 353():62-69. PubMed ID: 29635175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.