These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38742710)

  • 21. Coupling of plasmonic nanopore pairs: facing dipoles attract each other.
    Sannomiya T; Saito H; Junesch J; Yamamoto N
    Light Sci Appl; 2016 Sep; 5(9):e16146. PubMed ID: 30167187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer.
    Sheikholeslami S; Jun YW; Jain PK; Alivisatos AP
    Nano Lett; 2010 Jul; 10(7):2655-60. PubMed ID: 20536212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polarizing Free Electrons in Optical Near Fields.
    Pan D; Xu H
    Phys Rev Lett; 2023 May; 130(18):186901. PubMed ID: 37204889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong Coupling of Two-Dimensional Excitons and Plasmonic Photonic Crystals: Microscopic Theory Reveals Triplet Spectra.
    Greten L; Salzwedel R; Göde T; Greten D; Reich S; Hughes S; Selig M; Knorr A
    ACS Photonics; 2024 Apr; 11(4):1396-1411. PubMed ID: 38645994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast Coupling of Optical Near Fields to Low-Energy Electrons Probed in a Point-Projection Microscope.
    Wöste A; Hergert G; Quenzel T; Silies M; Wang D; Groß P; Lienau C
    Nano Lett; 2023 Jun; 23(12):5528-5534. PubMed ID: 37278447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements.
    Losquin A; Zagonel LF; Myroshnychenko V; Rodríguez-González B; Tencé M; Scarabelli L; Förstner J; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2015 Feb; 15(2):1229-37. PubMed ID: 25603194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial Resolution of Coherent Cathodoluminescence Super-Resolution Microscopy.
    Schefold J; Meuret S; Schilder N; Coenen T; Agrawal H; Garnett EC; Polman A
    ACS Photonics; 2019 Apr; 6(4):1067-1072. PubMed ID: 31024982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.
    Hung YT; Huang CB; Huang JS
    Opt Express; 2012 Aug; 20(18):20342-55. PubMed ID: 23037085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide.
    Apuzzo A; Février M; Salas-Montiel R; Bruyant A; Chelnokov A; Lérondel G; Dagens B; Blaize S
    Nano Lett; 2013 Mar; 13(3):1000-6. PubMed ID: 23413879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic radiance: probing structure at the Ångström scale with visible light.
    Gallinet B; Siegfried T; Sigg H; Nordlander P; Martin OJ
    Nano Lett; 2013 Feb; 13(2):497-503. PubMed ID: 23273336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution.
    Myroshnychenko V; Nishio N; García de Abajo FJ; Förstner J; Yamamoto N
    ACS Nano; 2018 Aug; 12(8):8436-8446. PubMed ID: 30067900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode.
    Tsai CY; Lin JW; Wu CY; Lin PT; Lu TW; Lee PT
    Nano Lett; 2012 Mar; 12(3):1648-54. PubMed ID: 22321005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam.
    Chu MW; Myroshnychenko V; Chen CH; Deng JP; Mou CY; García de Abajo FJ
    Nano Lett; 2009 Jan; 9(1):399-404. PubMed ID: 19063614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unique Electronic Excitations at Highly Localized Plasmonic Field.
    Minamimoto H; Zhou R; Fukushima T; Murakoshi K
    Acc Chem Res; 2022 Mar; 55(6):809-818. PubMed ID: 35184549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical transverse spin coupling through a plasmonic nanoparticle for particle-identification and field-mapping.
    Yang AP; Du LP; Meng FF; Yuan XC
    Nanoscale; 2018 May; 10(19):9286-9291. PubMed ID: 29737348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modal interference in spiky nanoshells.
    Hastings SP; Qian Z; Swanglap P; Fang Y; Engheta N; Park SJ; Link S; Fakhraai Z
    Opt Express; 2015 May; 23(9):11290-311. PubMed ID: 25969225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy.
    Flauraud V; Bernasconi GD; Butet J; Alexander DTL; Martin OJF; Brugger J
    ACS Nano; 2017 Apr; 11(4):3485-3495. PubMed ID: 28290663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition.
    Menabde SG; Lee IH; Lee S; Ha H; Heiden JT; Yoo D; Kim TT; Low T; Lee YH; Oh SH; Jang MS
    Nat Commun; 2021 Feb; 12(1):938. PubMed ID: 33608541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.