BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38742762)

  • 1. The Triceptide Maturase OscB Catalyzes Uniform Cyclophane Topology and Accepts Diverse Gly-Rich Precursor Peptides.
    Purushothaman M; Chang L; Zhong RJ; Morinaka BI
    ACS Chem Biol; 2024 Jun; 19(6):1229-1236. PubMed ID: 38742762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate Promiscuity of the Triceptide Maturase XncB Leads to Incorporation of Various Amino Acids and Detection of Oxygenated Products.
    Phan CS; Chang L; Nguyen TQN; Suarez AFL; Ho XH; Chen H; Koh IYF; Morinaka BI
    ACS Chem Biol; 2024 Apr; 19(4):855-860. PubMed ID: 38452396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Prevalent Group of Actinobacterial Radical SAM/SPASM Maturases Involved in Triceptide Biosynthesis.
    Phan CS; Morinaka BI
    ACS Chem Biol; 2022 Dec; 17(12):3284-3289. PubMed ID: 36454686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and Promiscuity Studies of Three-Residue Cyclophane Forming Enzymes Show Nonnative C-C Cross-Linked Products and Leader-Dependent Cyclization.
    Suarez AFL; Nguyen TQN; Chang L; Tooh YW; Yong RHS; Leow LC; Koh IYF; Chen H; Koh JWH; Selvanayagam A; Lim V; Tan YE; Agatha I; Winnerdy FR; Morinaka BI
    ACS Chem Biol; 2024 Mar; 19(3):774-783. PubMed ID: 38417140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Biosynthetic Landscape of Triceptides Reveals Radical SAM Enzymes That Catalyze Cyclophane Formation on Tyr- and His-Containing Motifs.
    Sugiyama R; Suarez AFL; Morishita Y; Nguyen TQN; Tooh YW; Roslan MNHB; Lo Choy J; Su Q; Goh WY; Gunawan GA; Wong FT; Morinaka BI
    J Am Chem Soc; 2022 Jul; 144(26):11580-11593. PubMed ID: 35729768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cyclophane-containing RiPPs from radical SAM enzymes.
    Phan CS; Morinaka BI
    Nat Prod Rep; 2024 May; 41(5):708-720. PubMed ID: 38047390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging Substrate Promiscuity of a Radical
    Eastman KAS; Kincannon WM; Bandarian V
    ACS Cent Sci; 2022 Aug; 8(8):1209-1217. PubMed ID: 36032765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-L-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link.
    Bruender NA; Wilcoxen J; Britt RD; Bandarian V
    Biochemistry; 2016 Apr; 55(14):2122-34. PubMed ID: 27007615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution and Substrate Specificity of the Thioether-Forming Radical
    Precord TW; Mahanta N; Mitchell DA
    ACS Chem Biol; 2019 Sep; 14(9):1981-1989. PubMed ID: 31449382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanded Sequence Space of Radical S-Adenosylmethionine-Dependent Enzymes Involved in Post-translational Macrocyclization.
    He BB; Cheng Z; Zhong Z; Gao Y; Liu H; Li YX
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212447. PubMed ID: 36199165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiopeptide Pyridine Synthase TbtD Catalyzes an Intermolecular Formal Aza-Diels-Alder Reaction.
    Bogart JW; Bowers AA
    J Am Chem Soc; 2019 Feb; 141(5):1842-1846. PubMed ID: 30653303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New peptides isolated from Lyngbya species: a review.
    Liu L; Rein KS
    Mar Drugs; 2010 Jun; 8(6):1817-37. PubMed ID: 20631872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of leader peptide binding enables leader-free cyanobactin processing.
    Koehnke J; Mann G; Bent AF; Ludewig H; Shirran S; Botting C; Lebl T; Houssen W; Jaspars M; Naismith JH
    Nat Chem Biol; 2015 Aug; 11(8):558-563. PubMed ID: 26098679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-Translational Formation of Aminomalonate by a Promiscuous Peptide-Modifying Radical SAM Enzyme.
    Ma S; Chen H; Li H; Ji X; Deng Z; Ding W; Zhang Q
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19957-19964. PubMed ID: 34164914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-translational formation of strained cyclophanes in bacteria.
    Nguyen TQN; Tooh YW; Sugiyama R; Nguyen TPD; Purushothaman M; Leow LC; Hanif K; Yong RHS; Agatha I; Winnerdy FR; Gugger M; Phan AT; Morinaka BI
    Nat Chem; 2020 Nov; 12(11):1042-1053. PubMed ID: 32807886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directing Biosynthesis: Practical Supply of Natural and Unnatural Cyanobactins.
    Sardar D; Tianero MD; Schmidt EW
    Methods Enzymol; 2016; 575():1-20. PubMed ID: 27417922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclizing Disulfide-Rich Peptides Using Sortase A.
    Agwa AJ; Craik DJ; Schroeder CI
    Methods Mol Biol; 2019; 2012():29-41. PubMed ID: 31161502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lasso peptides: an intriguing class of bacterial natural products.
    Hegemann JD; Zimmermann M; Xie X; Marahiel MA
    Acc Chem Res; 2015 Jul; 48(7):1909-19. PubMed ID: 26079760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria.
    Li B; Sher D; Kelly L; Shi Y; Huang K; Knerr PJ; Joewono I; Rusch D; Chisholm SW; van der Donk WA
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10430-5. PubMed ID: 20479271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.