These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 38742901)
1. Optimization of quenched fluorescent peptide substrates of SARS-CoV-2 3CL Cesar Ramos de Jesus H; Solis N; Machado Y; Pablos I; Bell PA; Kappelhoff R; Grin PM; Sorgi CA; Butler GS; Overall CM J Virol; 2024 Jun; 98(6):e0004924. PubMed ID: 38742901 [TBL] [Abstract][Full Text] [Related]
2. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Eckhard U; Huesgen PF; Schilling O; Bellac CL; Butler GS; Cox JH; Dufour A; Goebeler V; Kappelhoff R; Keller UAD; Klein T; Lange PF; Marino G; Morrison CJ; Prudova A; Rodriguez D; Starr AE; Wang Y; Overall CM Matrix Biol; 2016 Jan; 49():37-60. PubMed ID: 26407638 [TBL] [Abstract][Full Text] [Related]
3. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Muramatsu T; Takemoto C; Kim YT; Wang H; Nishii W; Terada T; Shirouzu M; Yokoyama S Proc Natl Acad Sci U S A; 2016 Nov; 113(46):12997-13002. PubMed ID: 27799534 [TBL] [Abstract][Full Text] [Related]
4. Rapid peptide-based screening on the substrate specificity of severe acute respiratory syndrome (SARS) coronavirus 3C-like protease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Chu LH; Choy WY; Tsai SN; Rao Z; Ngai SM Protein Sci; 2006 Apr; 15(4):699-709. PubMed ID: 16600962 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Self-Processing Activities and Substrate Specificities of Porcine Torovirus 3C-Like Protease. Xu S; Zhou J; Chen Y; Tong X; Wang Z; Guo J; Chen J; Fang L; Wang D; Xiao S J Virol; 2020 Sep; 94(20):. PubMed ID: 32727876 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CL Pablos I; Machado Y; de Jesus HCR; Mohamud Y; Kappelhoff R; Lindskog C; Vlok M; Bell PA; Butler GS; Grin PM; Cao QT; Nguyen JP; Solis N; Abbina S; Rut W; Vederas JC; Szekely L; Szakos A; Drag M; Kizhakkedathu JN; Mossman K; Hirota JA; Jan E; Luo H; Banerjee A; Overall CM Cell Rep; 2021 Oct; 37(4):109892. PubMed ID: 34672947 [TBL] [Abstract][Full Text] [Related]
7. Screening potential FDA-approved inhibitors of the SARS-CoV-2 major protease 3CL Liu WS; Li HG; Ding CH; Zhang HX; Wang RR; Li JQ Aging (Albany NY); 2021 Mar; 13(5):6258-6272. PubMed ID: 33678621 [TBL] [Abstract][Full Text] [Related]
8. Profiling of substrate specificity of SARS-CoV 3CL. Chuck CP; Chong LT; Chen C; Chow HF; Wan DC; Wong KB PLoS One; 2010 Oct; 5(10):e13197. PubMed ID: 20949131 [TBL] [Abstract][Full Text] [Related]
9. Allosteric Regulation of 3CL Protease of SARS-CoV-2 and SARS-CoV Observed in the Crystal Structure Ensemble. Kidera A; Moritsugu K; Ekimoto T; Ikeguchi M J Mol Biol; 2021 Dec; 433(24):167324. PubMed ID: 34717972 [TBL] [Abstract][Full Text] [Related]
10. Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3 coronaviruses. Chuck CP; Chow HF; Wan DC; Wong KB PLoS One; 2011; 6(11):e27228. PubMed ID: 22073294 [TBL] [Abstract][Full Text] [Related]
11. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries. Barré O; Dufour A; Eckhard U; Kappelhoff R; Béliveau F; Leduc R; Overall CM PLoS One; 2014; 9(9):e105984. PubMed ID: 25211023 [TBL] [Abstract][Full Text] [Related]
12. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Chiou WC; Chen JC; Chen YT; Yang JM; Hwang LH; Lyu YS; Yang HY; Huang C Biochem Biophys Res Commun; 2022 Feb; 591():130-136. PubMed ID: 33454058 [TBL] [Abstract][Full Text] [Related]
13. Kinetic comparison of all eleven viral polyprotein cleavage site processing events by SARS-CoV-2 main protease using a linked protein FRET platform. Kenward C; Vuckovic M; Paetzel M; Strynadka NCJ J Biol Chem; 2024 Jun; 300(6):107367. PubMed ID: 38750796 [TBL] [Abstract][Full Text] [Related]
14. Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate. Zunszain PA; Knox SR; Sweeney TR; Yang J; Roqué-Rosell N; Belsham GJ; Leatherbarrow RJ; Curry S J Mol Biol; 2010 Jan; 395(2):375-89. PubMed ID: 19883658 [TBL] [Abstract][Full Text] [Related]
15. Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease. Zhu L; George S; Schmidt MF; Al-Gharabli SI; Rademann J; Hilgenfeld R Antiviral Res; 2011 Nov; 92(2):204-12. PubMed ID: 21854807 [TBL] [Abstract][Full Text] [Related]
16. N-Terminomics for the Identification of In Vitro Substrates and Cleavage Site Specificity of the SARS-CoV-2 Main Protease. Koudelka T; Boger J; Henkel A; Schönherr R; Krantz S; Fuchs S; Rodríguez E; Redecke L; Tholey A Proteomics; 2021 Jan; 21(2):e2000246. PubMed ID: 33111431 [TBL] [Abstract][Full Text] [Related]
17. Identification of Host Cellular Protein Substrates of SARS-COV-2 Main Protease. Miczi M; Golda M; Kunkli B; Nagy T; Tőzsér J; Mótyán JA Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333742 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538 [TBL] [Abstract][Full Text] [Related]
19. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. Biniossek ML; Nägler DK; Becker-Pauly C; Schilling O J Proteome Res; 2011 Dec; 10(12):5363-73. PubMed ID: 21967108 [TBL] [Abstract][Full Text] [Related]