BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38743049)

  • 1. CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues.
    Aguillon R; Rinsky M; Simon-Blecher N; Doniger T; Appelbaum L; Levy O
    Elife; 2024 May; 12():. PubMed ID: 38743049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory conflict disrupts circadian rhythms in the sea anemone
    Berger CA; Tarrant AM
    Elife; 2023 Apr; 12():. PubMed ID: 37022138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis.
    Weizman EN; Tannenbaum M; Tarrant AM; Hakim O; Levy O
    PLoS Genet; 2019 Nov; 15(11):e1008397. PubMed ID: 31693674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome-wide analysis of differential gene expression in response to light:dark cycles in a model cnidarian.
    Leach WB; Macrander J; Peres R; Reitzel AM
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Jun; 26():40-49. PubMed ID: 29605490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light entrained rhythmic gene expression in the sea anemone Nematostella vectensis: the evolution of the animal circadian clock.
    Reitzel AM; Behrendt L; Tarrant AM
    PLoS One; 2010 Sep; 5(9):e12805. PubMed ID: 20877728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional remodelling upon light removal in a model cnidarian: Losses and gains in gene expression.
    Leach WB; Reitzel AM
    Mol Ecol; 2019 Jul; 28(14):3413-3426. PubMed ID: 31264275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of circadian behavior in the starlet sea anemone, Nematostella vectensis.
    Hendricks WD; Byrum CA; Meyer-Bernstein EL
    PLoS One; 2012; 7(10):e46843. PubMed ID: 23056482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoupling behavioral and transcriptional responses to color in an eyeless cnidarian.
    Leach WB; Reitzel AM
    BMC Genomics; 2020 May; 21(1):361. PubMed ID: 32410571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cnidarians are CLOCKing in.
    Kwiatkowski ER; Emery P
    Elife; 2024 May; 13():. PubMed ID: 38716806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis.
    Oren M; Tarrant AM; Alon S; Simon-Blecher N; Elbaz I; Appelbaum L; Levy O
    Sci Rep; 2015 Jun; 5():11418. PubMed ID: 26081482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light- and clock-control of genes involved in detoxification.
    Carmona-Antoñanzas G; Santi M; Migaud H; Vera LM
    Chronobiol Int; 2017; 34(8):1026-1041. PubMed ID: 28617195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian clockwork machinery in neural retina: evidence for the presence of functional clock components in photoreceptor-enriched chick retinal cell cultures.
    Chaurasia SS; Pozdeyev N; Haque R; Visser A; Ivanova TN; Iuvone PM
    Mol Vis; 2006 Mar; 12():215-23. PubMed ID: 16604054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of transient constant light-dark conditions on daily rhythms of Period and Clock transcripts during Senegalese sole metamorphosis.
    Martín-Robles ÁJ; Whitmore D; Pendón C; Muñoz-Cueto JA
    Chronobiol Int; 2013 Jun; 30(5):699-710. PubMed ID: 23713834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing a circadian clock in captive arctic-breeding songbirds, lapland longspurs (Calcarius lapponicus), under constant illumination.
    Ashley NT; Ubuka T; Schwabl I; Goymann W; Salli BM; Bentley GE; Buck CL
    J Biol Rhythms; 2014 Dec; 29(6):456-69. PubMed ID: 25326246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock.
    Husse J; Leliavski A; Tsang AH; Oster H; Eichele G
    FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental effects of constant light on circadian behaviour and gene expressions in zebra finches: Insights into mechanisms of metabolic adaptation to aperiodic environment in diurnal animals.
    Prabhat A; Malik I; Jha NA; Bhardwaj SK; Kumar V
    J Photochem Photobiol B; 2020 Oct; 211():111995. PubMed ID: 32836050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal expression of clock genes in central and peripheral tissues of spotted munia under varying light conditions: Evidence for circadian regulation of daily physiology in a non-photoperiodic circannual songbird species.
    Agarwal N; Mishra I; Rani S; Kumar V
    Chronobiol Int; 2018 May; 35(5):617-632. PubMed ID: 29370529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms and different photoresponses of Clock gene transcription in the rat suprachiasmatic nucleus and pineal gland.
    Wang GQ; Fu CL; Li JX; Du YZ; Tong J
    Sheng Li Xue Bao; 2006 Aug; 58(4):359-64. PubMed ID: 16906337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian clocks in the cnidaria: environmental entrainment, molecular regulation, and organismal outputs.
    Reitzel AM; Tarrant AM; Levy O
    Integr Comp Biol; 2013 Jul; 53(1):118-30. PubMed ID: 23620252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.