These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38743054)

  • 1. ARKA: a framework of dimensionality reduction for machine-learning classification modeling, risk assessment, and data gap-filling of sparse environmental toxicity data.
    Banerjee A; Roy K
    Environ Sci Process Impacts; 2024 Jun; 26(6):991-1007. PubMed ID: 38743054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of chemical similarity measures in an unconventional modeling framework c-RASAR along with dimensionality reduction techniques to a representative hepatotoxicity dataset.
    Banerjee A; Roy K
    Sci Rep; 2024 Sep; 14(1):20812. PubMed ID: 39242880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction-Inspired Intelligent Training for the Development of Classification Read-across Structure-Activity Relationship (c-RASAR) Models for Organic Skin Sensitizers: Assessment of Classification Error Rate from Novel Similarity Coefficients.
    Banerjee A; Roy K
    Chem Res Toxicol; 2023 Sep; 36(9):1518-1531. PubMed ID: 37584642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a read-across-derived classification model for the predictions of mutagenicity data and its comparison with traditional QSAR models and expert systems.
    Pandey SK; Roy K
    Toxicology; 2023 Dec; 500():153676. PubMed ID: 37993082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure.
    Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I
    Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity.
    Sedykh A; Zhu H; Tang H; Zhang L; Richard A; Rusyn I; Tropsha A
    Environ Health Perspect; 2011 Mar; 119(3):364-70. PubMed ID: 20980217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent trends in statistical QSAR modeling of environmental chemical toxicity.
    Tropsha A
    Exp Suppl; 2012; 101():381-411. PubMed ID: 22945576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data.
    Rusyn I; Sedykh A; Low Y; Guyton KZ; Tropsha A
    Toxicol Sci; 2012 May; 127(1):1-9. PubMed ID: 22387746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR modeling of cumulative environmental end-points for the prioritization of hazardous chemicals.
    Gramatica P; Papa E; Sangion A
    Environ Sci Process Impacts; 2018 Jan; 20(1):38-47. PubMed ID: 29226926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient predictions of cytotoxicity of TiO
    Banerjee A; Kar S; Pore S; Roy K
    Nanotoxicology; 2023 Feb; 17(1):78-93. PubMed ID: 36891579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents.
    Zhu H; Ye L; Richard A; Golbraikh A; Wright FA; Rusyn I; Tropsha A
    Environ Health Perspect; 2009 Aug; 117(8):1257-64. PubMed ID: 19672406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On Some Novel Similarity-Based Functions Used in the ML-Based q-RASAR Approach for Efficient Quantitative Predictions of Selected Toxicity End Points.
    Banerjee A; Roy K
    Chem Res Toxicol; 2023 Mar; 36(3):446-464. PubMed ID: 36811528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information.
    Shah I; Liu J; Judson RS; Thomas RS; Patlewicz G
    Regul Toxicol Pharmacol; 2016 Aug; 79():12-24. PubMed ID: 27174420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interspecies quantitative structure-toxicity-toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus.
    Das RN; Roy K; Popelier PL
    Ecotoxicol Environ Saf; 2015 Dec; 122():497-520. PubMed ID: 26414597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.