BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38743428)

  • 21. The Sputum Microbiome in Chronic Obstructive Pulmonary Disease Exacerbations.
    Huang YJ; Boushey HA
    Ann Am Thorac Soc; 2015 Nov; 12 Suppl 2(Suppl 2):S176-80. PubMed ID: 26595736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seasonal Dynamics of the Upper Respiratory Tract Microbiome in Chronic Obstructive Pulmonary Disease.
    Cai S; Gao J; Liu X; Yang J; Feng D; Li G; Li S; Yang H; Wang Z; Yi X; Zhou Y
    Int J Chron Obstruct Pulmon Dis; 2023; 18():1267-1276. PubMed ID: 37362620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Airway host-microbiome interactions in chronic obstructive pulmonary disease.
    Wang Z; Maschera B; Lea S; Kolsum U; Michalovich D; Van Horn S; Traini C; Brown JR; Hessel EM; Singh D
    Respir Res; 2019 Jun; 20(1):113. PubMed ID: 31170986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The alterations of oral, airway and intestine microbiota in chronic obstructive pulmonary disease: a systematic review and meta-analysis.
    Kou Z; Liu K; Qiao Z; Wang Y; Li Y; Li Y; Yu X; Han W
    Front Immunol; 2024; 15():1407439. PubMed ID: 38779669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic obstructive pulmonary disease and bronchiectasis.
    Novosad SA; Barker AF
    Curr Opin Pulm Med; 2013 Mar; 19(2):133-9. PubMed ID: 23287285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease.
    Wang L; Hao K; Yang T; Wang C
    Chin Med J (Engl); 2017 Sep; 130(17):2107-2111. PubMed ID: 28741603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical Features of Patients with Bronchiectasis with Comorbid Chronic Obstructive Pulmonary Disease in China.
    Xie C; Wen Y; Zhao Y; Zeng S; Guo Q; Liang Q; Chen L; Liu Y; Qiu F; Yang L; Lu J
    Med Sci Monit; 2019 Sep; 25():6805-6811. PubMed ID: 31503552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variations in fecal microbial profiles of acute exacerbations and stable chronic obstructive pulmonary disease.
    Wu Y; Luo Z; Liu C
    Life Sci; 2021 Jan; 265():118738. PubMed ID: 33181175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Microbiome in COPD: Emerging Potential for Microbiome-Targeted Interventions.
    Millares L; Monso E
    Int J Chron Obstruct Pulmon Dis; 2022; 17():1835-1845. PubMed ID: 35983167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lung microbiome mediates the progression from chronic obstructive pulmonary disease to lung cancer through inflammation.
    Wang YJ; Wu SS; Chu J; Kong XY
    Yi Chuan; 2021 Jan; 43(1):30-39. PubMed ID: 33509772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of Long-Term Erythromycin Therapy on the Oropharyngeal Microbiome and Resistance Gene Reservoir in Non-Cystic Fibrosis Bronchiectasis.
    Choo JM; Abell GCJ; Thomson R; Morgan L; Waterer G; Gordon DL; Taylor SL; Leong LEX; Wesselingh SL; Burr LD; Rogers GB
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29669883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chronic obstructive pulmonary disease and the airway microbiome: A review for clinicians.
    Luo L; Tang J; Du X; Li N
    Respir Med; 2024; 225():107586. PubMed ID: 38460708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The microbiome and critical illness.
    Dickson RP
    Lancet Respir Med; 2016 Jan; 4(1):59-72. PubMed ID: 26700442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Lung Microbiome in COPD and Lung Cancer: Exploring the Potential of Metal-Based Drugs.
    O'Shaughnessy M; Sheils O; Baird AM
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitization to
    Everaerts S; Lagrou K; Dubbeldam A; Lorent N; Vermeersch K; Van Hoeyveld E; Bossuyt X; Dupont LJ; Vanaudenaerde BM; Janssens W
    Int J Chron Obstruct Pulmon Dis; 2017; 12():2629-2638. PubMed ID: 28919731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The microbiome in bronchiectasis.
    Richardson H; Dicker AJ; Barclay H; Chalmers JD
    Eur Respir Rev; 2019 Sep; 28(153):. PubMed ID: 31484665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental exposures, the oral-lung axis and respiratory health: The airway microbiome goes on stage for the personalized management of human lung function.
    Garmendia J; Cebollero-Rivas P
    Microb Biotechnol; 2024 Jun; 17(6):e14506. PubMed ID: 38881505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD.
    Leung JM; Tiew PY; Mac Aogáin M; Budden KF; Yong VF; Thomas SS; Pethe K; Hansbro PM; Chotirmall SH
    Respirology; 2017 May; 22(4):634-650. PubMed ID: 28342288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The 'ABC' of respiratory disorders among adult Indigenous people: asthma, bronchiectasis and COPD among Aboriginal Australians - a systematic review.
    Howarth TP; Jersmann HPA; Majoni SW; Mo L; Ben Saad H; Ford LP; Heraganahally SS
    BMJ Open Respir Res; 2023 Jul; 10(1):. PubMed ID: 37451702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lung microbiome: new insights into bronchiectasis' outcome.
    Azoicai A; Lupu A; Alexoae MM; Starcea IM; Mocanu A; Lupu VV; Mitrofan EC; Nedelcu AH; Tepordei RT; Munteanu D; Mitrofan C; Salaru DL; Ioniuc I
    Front Cell Infect Microbiol; 2024; 14():1405399. PubMed ID: 38895737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.