BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38743572)

  • 1. Multi-frequency signal acquisition and phase measurement in space gravitational wave detection.
    Zhang QT; Liu HS; Dong P; Li P; Luo ZR
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38743572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phasemeter concept for space applications that integrates an autonomous signal acquisition stage based on the discrete wavelet transform.
    Ales F; Mandel O; Gath P; Johann U; Braxmaier C
    Rev Sci Instrum; 2015 Aug; 86(8):084502. PubMed ID: 26329214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beat-Notes Acquisition of Laser Heterodyne Interference Signal for Space Gravitational Wave Detection.
    Wang Z; Yu T; Sui Y; Wang Z
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evaluation of phasemeter prototype performance for the space gravitational waves detection.
    Liu HS; Dong YH; Li YQ; Luo ZR; Jin G
    Rev Sci Instrum; 2014 Feb; 85(2):024503. PubMed ID: 24593376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on TPD Phasemeter to Suppress Low-Frequency Amplitude Fluctuation and Improve Fast-Acquiring Range for GW Detection.
    Ming M; Zhang J; Duan H; Li Z; Huang X; Tu L; Yeh HC
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental scheme and noise analysis of weak-light phase locked loop for large-scale intersatellite laser interferometer.
    Liang YR; Feng YJ; Xiao GY; Jiang YZ; Li L; Jin XL
    Rev Sci Instrum; 2021 Dec; 92(12):124501. PubMed ID: 34972474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Note: A new method for directly reducing the sampling jitter noise of the digital phasemeter.
    Liang YR
    Rev Sci Instrum; 2018 Mar; 89(3):036106. PubMed ID: 29604779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.
    Sweeney D; Mueller G
    Opt Express; 2012 Nov; 20(23):25603-12. PubMed ID: 23187379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser acquisition experimental demonstration for space gravitational wave detection missions.
    Gao R; Liu H; Zhao Y; Luo Z; Shen J; Jin G
    Opt Express; 2021 Mar; 29(5):6368-6383. PubMed ID: 33726160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a Capacitive Sensing Circuit and Sensitive Structure Based on a Low-Temperature-Drift Planar Transformer.
    Sui Y; Yu T; Wang L; Wang Z; Xue K; Chen Y; Liu X; Chen Y
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced inter-spacecraft offset frequency setting strategy for the Taiji program based on a two-stage optimization algorithm.
    Zhang J; Ma X; Zhao M; Peng X; Gao C; Yang Z
    Appl Opt; 2023 Jun; 62(16):4370-4380. PubMed ID: 37706930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of coupling between optical aberration and tilt-to-length noise in a space-based gravitational wave telescope.
    Lin H; Li J; Huang Y; Yu M; Luo J; Wang Z; Wu Y
    Opt Express; 2023 Jan; 31(3):4367-4378. PubMed ID: 36785407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Precision Inertial Sensor Charge Ground Measurement Method Based on Phase-Sensitive Demodulation.
    Liu Y; Yu T; Wang Y; Zhao Z; Wang Z
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic, high-speed, high-precision acquisition scheme with QPD for the Taiji program.
    Gao R; Liu H; Zhao Y; Luo Z; Jin G
    Opt Express; 2021 Jan; 29(2):821-836. PubMed ID: 33726310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and analysis of two-dimensional point-ahead angle mechanism for space gravitational-wave detection.
    Zhu W; Xie Y; Qian Y; Jia J; Zhang L; Wang X
    Rev Sci Instrum; 2024 Feb; 95(2):. PubMed ID: 38350474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 10 W super-wideband ultra-low-intensity-noise single-frequency fiber laser at 1 µm.
    Sun Y; Wang C; Zhao Q; Yang C; Zeng C; Lin W; Feng Z; Yang Z; Xu S
    Opt Express; 2024 Mar; 32(7):11419-11428. PubMed ID: 38570990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser.
    Zhao Q; Xu S; Zhou K; Yang C; Li C; Feng Z; Peng M; Deng H; Yang Z
    Opt Lett; 2016 Apr; 41(7):1333-5. PubMed ID: 27192229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Squeezing-enhanced heterodyne detection of 10  Hz atto-Watt optical signals.
    Xie B; Feng S
    Opt Lett; 2018 Dec; 43(24):6073-6076. PubMed ID: 30548007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency Division Control of Line-of-Sight Tracking for Space Gravitational Wave Detector.
    Deng H; Meng Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transponder-type laser interferometer prototype for spaceborne gravitational wave detectors.
    Mu H; Xu X; Le T; Tan Y; Wei H; Li Y
    Appl Opt; 2024 Feb; 63(4):1032-1038. PubMed ID: 38437401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.