These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38743690)

  • 1. Genotyping-by-sequencing-based high-resolution mapping reveals a single candidate gene for the grapevine veraison locus Ver1.
    Frenzke L; Röckel F; Wenke T; Schwander F; Grützmann K; Naumann J; Zakrzewski F; Heinekamp T; Maglione M; Wenke A; Kögler A; Zyprian E; Dahl A; Förster F; Töpfer R; Wanke S
    Plant Physiol; 2024 Sep; 196(1):244-260. PubMed ID: 38743690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time.
    Theine J; Holtgräwe D; Herzog K; Schwander F; Kicherer A; Hausmann L; Viehöver P; Töpfer R; Weisshaar B
    BMC Plant Biol; 2021 Jul; 21(1):327. PubMed ID: 34233614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data.
    Delfino P; Zenoni S; Imanifard Z; Tornielli GB; Bellin D
    BMC Genomics; 2019 Oct; 20(1):739. PubMed ID: 31615398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes.
    Costantini L; Battilana J; Lamaj F; Fanizza G; Grando MS
    BMC Plant Biol; 2008 Apr; 8():38. PubMed ID: 18419811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative trait loci affecting pathogen resistance and ripening of grapevines.
    Zyprian E; Ochßner I; Schwander F; Šimon S; Hausmann L; Bonow-Rex M; Moreno-Sanz P; Grando MS; Wiedemann-Merdinoglu S; Merdinoglu D; Eibach R; Töpfer R
    Mol Genet Genomics; 2016 Aug; 291(4):1573-94. PubMed ID: 27038830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomics of the grape berry shrivel ripening disorder.
    Savoi S; Herrera JC; Forneck A; Griesser M
    Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages.
    Duchêne E; Butterlin G; Dumas V; Merdinoglu D
    Theor Appl Genet; 2012 Mar; 124(4):623-35. PubMed ID: 22052019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
    Deluc LG; Grimplet J; Wheatley MD; Tillett RL; Quilici DR; Osborne C; Schooley DA; Schlauch KA; Cushman JC; Cramer GR
    BMC Genomics; 2007 Nov; 8():429. PubMed ID: 18034876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine.
    Grzeskowiak L; Costantini L; Lorenzi S; Grando MS
    Theor Appl Genet; 2013 Nov; 126(11):2763-76. PubMed ID: 23918063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of genes and alleles involved in the control of flowering time in grapevine.
    Kamal N; Ochßner I; Schwandner A; Viehöver P; Hausmann L; Töpfer R; Weisshaar B; Holtgräwe D
    PLoS One; 2019; 14(7):e0214703. PubMed ID: 31269026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison.
    Pilati S; Perazzolli M; Malossini A; Cestaro A; Demattè L; Fontana P; Dal Ri A; Viola R; Velasco R; Moser C
    BMC Genomics; 2007 Nov; 8():428. PubMed ID: 18034875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction analysis of grapevine MIKC(c)-type MADS transcription factors and heterologous expression of putative véraison regulators in tomato.
    Mellway RD; Lund ST
    J Plant Physiol; 2013 Nov; 170(16):1424-33. PubMed ID: 23787144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Genetic Basis of Anthocyanin Acylation in North American Grapes (
    Karn A; Diaz-Garcia L; Reshef N; Zou C; Manns DC; Cadle-Davidson L; Mansfield AK; Reisch BI; Sacks GL
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.
    Fournier-Level A; Le Cunff L; Gomez C; Doligez A; Ageorges A; Roux C; Bertrand Y; Souquet JM; Cheynier V; This P
    Genetics; 2009 Nov; 183(3):1127-39. PubMed ID: 19720862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine.
    Fasoli M; Richter CL; Zenoni S; Bertini E; Vitulo N; Dal Santo S; Dokoozlian N; Pezzotti M; Tornielli GB
    Plant Physiol; 2018 Nov; 178(3):1187-1206. PubMed ID: 30224433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation.
    Massonnet M; Fasoli M; Tornielli GB; Altieri M; Sandri M; Zuccolotto P; Paci P; Gardiman M; Zenoni S; Pezzotti M
    Plant Physiol; 2017 Aug; 174(4):2376-2396. PubMed ID: 28652263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative splicing regulation appears to play a crucial role in grape berry development and is also potentially involved in adaptation responses to the environment.
    Maillot P; Velt A; Rustenholz C; Butterlin G; Merdinoglu D; Duchêne E
    BMC Plant Biol; 2021 Oct; 21(1):487. PubMed ID: 34696712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.
    Rienth M; Torregrosa L; Luchaire N; Chatbanyong R; Lecourieux D; Kelly MT; Romieu C
    BMC Plant Biol; 2014 Apr; 14():108. PubMed ID: 24774299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VviERF6Ls: an expanded clade in Vitis responds transcriptionally to abiotic and biotic stresses and berry development.
    Toups HS; Cochetel N; Gray D; Cramer GR
    BMC Genomics; 2020 Jul; 21(1):472. PubMed ID: 32646368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and in situ localization of two major PR proteins of grapevine berries during development and after UV-C exposition.
    Colas S; Afoufa-Bastien D; Jacquens L; Clément C; Baillieul F; Mazeyrat-Gourbeyre F; Monti-Dedieu L
    PLoS One; 2012; 7(8):e43681. PubMed ID: 22937077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.