These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38744086)
41. Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Hassan FAS; Ali E; Gaber A; Fetouh MI; Mazrou R Plant Physiol Biochem; 2021 May; 162():291-300. PubMed ID: 33714144 [TBL] [Abstract][Full Text] [Related]
42. Effects of jasmonic acid in foliar spray and an humic acid amendment to saline soils on forage sorghum plants' growth and antioxidant defense system. Ali AYA; Zhou G; Elsiddig AM; Zhu G; Meng T; Jiao X; Ahmed I; Ibrahim Salih EG; Ibrahim MEH PeerJ; 2022; 10():e13793. PubMed ID: 36262417 [TBL] [Abstract][Full Text] [Related]
43. Influence of foliar application of glycinebetaine on Tagetes erecta L yield cultivated under salinity conditions. Alamer KH; Ali EF Braz J Biol; 2022; 82():e256502. PubMed ID: 35239822 [TBL] [Abstract][Full Text] [Related]
44. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. Sen SK; Chouhan D; Das D; Ghosh R; Mandal P Int J Biol Macromol; 2020 Feb; 145():108-123. PubMed ID: 31870871 [TBL] [Abstract][Full Text] [Related]
45. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Yin L; Wang S; Tanaka K; Fujihara S; Itai A; Den X; Zhang S Plant Cell Environ; 2016 Feb; 39(2):245-58. PubMed ID: 25753986 [TBL] [Abstract][Full Text] [Related]
46. Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions. Kamali S; Mehraban A PLoS One; 2020; 15(12):e0243824. PubMed ID: 33370318 [TBL] [Abstract][Full Text] [Related]
47. Effects of nitrogen fertilization and drought on hydrocyanic acid accumulation and morpho-physiological parameters of sorghums. Shehab AESAE; Guo Y J Sci Food Agric; 2021 Jun; 101(8):3355-3365. PubMed ID: 33227149 [TBL] [Abstract][Full Text] [Related]
48. Gibberellic acid and nitrogen efficiently protect early seedlings growth stage from salt stress damage in Sorghum. Ali AYA; Ibrahim MEH; Zhou G; Nimir NEA; Elsiddig AMI; Jiao X; Zhu G; Salih EGI; Suliman MSES; Elradi SBM Sci Rep; 2021 Mar; 11(1):6672. PubMed ID: 33758238 [TBL] [Abstract][Full Text] [Related]
49. Physio-biochemical assessment and expression analysis of genes associated with drought tolerance in sugarcane (Saccharum spp. hybrids) exposed to GA Tripathi P; Chandra A; Prakash J Plant Biol (Stuttg); 2019 Jan; 21(1):45-53. PubMed ID: 30255565 [TBL] [Abstract][Full Text] [Related]
50. Synergistic effect of biochar-based compounds from vegetable wastes and gibberellic acid on wheat growth under salinity stress. Anwar T; Munwwar F; Qureshi H; Siddiqi EH; Hanif A; Anwaar S; Gul S; Waheed A; Alwahibi MS; Kamal A Sci Rep; 2023 Nov; 13(1):19024. PubMed ID: 37923861 [TBL] [Abstract][Full Text] [Related]
51. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Rodríguez AA; Stella AM; Storni MM; Zulpa G; Zaccaro MC Saline Syst; 2006 Jun; 2():7. PubMed ID: 16756665 [TBL] [Abstract][Full Text] [Related]
52. The regulation of Seckin Dinler B; Cetinkaya H; Secgin Z Physiol Mol Biol Plants; 2023 Jan; 29(1):69-85. PubMed ID: 36733837 [TBL] [Abstract][Full Text] [Related]
53. Cytokinin and gibberellic acid-mediated waterlogging tolerance of mungbean ( Islam MR; Rahman MM; Mohi-Ud-Din M; Akter M; Zaman E; Keya SS; Hasan M; Hasanuzzaman M PeerJ; 2022; 10():e12862. PubMed ID: 35186468 [TBL] [Abstract][Full Text] [Related]
54. Stability Analysis and Molecular Description of Some Promising Sorghum Lines Tolerant to Salt Stress. Bellah Ali El-Mouhamady A; Naif E; Mohammad El-Hawary M Pak J Biol Sci; 2021 Jan; 24(12):1278-1296. PubMed ID: 34989205 [TBL] [Abstract][Full Text] [Related]
55. Effects of gibberellic acid on Tifton 85 bermudagrass (Cynodon spp.) in constructed wetland systems. Araújo ED; Borges AC; Dias NM; Ribeiro DM PLoS One; 2018; 13(10):e0206378. PubMed ID: 30365537 [TBL] [Abstract][Full Text] [Related]
56. Gibberellic acid application on biomass, oxidative stress response, and photosynthesis in spinach (Spinacia oleracea L.) seedlings under copper stress. Gong Q; Li ZH; Wang L; Zhou JY; Kang Q; Niu DD Environ Sci Pollut Res Int; 2021 Oct; 28(38):53594-53604. PubMed ID: 34036494 [TBL] [Abstract][Full Text] [Related]
57. New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition. Oliveira FDB; Miranda RS; Araújo GDS; Coelho DG; Lobo MDP; Paula-Marinho SO; Lopes LS; Monteiro-Moreira ACO; Carvalho HH; Gomes-Filho E Plant Physiol Biochem; 2020 Sep; 154():723-734. PubMed ID: 32763797 [TBL] [Abstract][Full Text] [Related]
58. Effects of melatonin, proline, and salicylic acid on seedling growth, photosynthetic activity, and leaf nutrients of sorghum under salt stress. Kiremit MS; Öztürk E; Arslan H; Subrata BAG; Akay H; Bakirova A Plant Direct; 2024 Mar; 8(3):e574. PubMed ID: 38481437 [TBL] [Abstract][Full Text] [Related]
59. Effects of gibberellic acid (GA Gao XT; Wu MH; Sun D; Li HQ; Chen WK; Yang HY; Liu FQ; Wang QC; Wang YY; Wang J; He F J Sci Food Agric; 2020 Jul; 100(9):3729-3740. PubMed ID: 32266978 [TBL] [Abstract][Full Text] [Related]
60. Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Saleem MH; Fahad S; Adnan M; Ali M; Rana MS; Kamran M; Ali Q; Hashem IA; Bhantana P; Ali M; Hussain RM Environ Sci Pollut Res Int; 2020 Oct; 27(29):37121-37133. PubMed ID: 32583108 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]