These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38744126)
1. Encapsulation of antioxidants with colloidal lipid particles for enhancing the photooxidation stability of phytosterol in Pickering emulsions. Yang B; Chen C; Huang W; Zhao T; Ji S; Liu Y; Lu B Food Chem; 2024 Sep; 452():139474. PubMed ID: 38744126 [TBL] [Abstract][Full Text] [Related]
2. Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles? Schröder A; Sprakel J; Boerkamp W; Schroën K; Berton-Carabin CC Food Res Int; 2019 Jun; 120():352-363. PubMed ID: 31000249 [TBL] [Abstract][Full Text] [Related]
3. Water-In-Oil Pickering Emulsions Stabilized by Microcrystalline Phytosterols in Oil: Fabrication Mechanism and Application as a Salt Release System. Lan M; Zheng J; Huang C; Wang Y; Hu W; Lu S; Liu F; Ou S J Agric Food Chem; 2022 May; 70(17):5408-5416. PubMed ID: 35439006 [TBL] [Abstract][Full Text] [Related]
4. Phytosterol colloidal particles as Pickering stabilizers for emulsions. Liu F; Tang CH J Agric Food Chem; 2014 Jun; 62(22):5133-41. PubMed ID: 24848560 [TBL] [Abstract][Full Text] [Related]
5. Pickering particles as interfacial reservoirs of antioxidants. Schröder A; Laguerre M; Sprakel J; Schroën K; Berton-Carabin CC J Colloid Interface Sci; 2020 Sep; 575():489-498. PubMed ID: 32434100 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations of the interfacial behaviors and photo-oxidation of phytosterol under different emulsion oil content. Yang B; Zhao T; Ji S; Liu Y; Xu M; Lu B Food Chem; 2024 Sep; 451():139292. PubMed ID: 38663239 [TBL] [Abstract][Full Text] [Related]
7. Tailored microstructure of colloidal lipid particles for Pickering emulsions with tunable properties. Schröder A; Sprakel J; Schroën K; Berton-Carabin CC Soft Matter; 2017 May; 13(17):3190-3198. PubMed ID: 28397896 [TBL] [Abstract][Full Text] [Related]
8. Rice bran-modified wheat gluten nanoparticles effectively stabilized pickering emulsion: An interfacial antioxidant inhibiting lipid oxidation. Wang Z; Ma Y; Chen H; Deng Y; Wei Z; Zhang Y; Tang X; Li P; Zhao Z; Zhou P; Liu G; Zhang M Food Chem; 2022 Sep; 387():132874. PubMed ID: 35427865 [TBL] [Abstract][Full Text] [Related]
9. Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the in vitro digestion fate. Zhou FZ; Zeng T; Yin SW; Tang CH; Yuan DB; Yang XQ Food Funct; 2018 Feb; 9(2):959-970. PubMed ID: 29322140 [TBL] [Abstract][Full Text] [Related]
10. Whey protein isolate-phytosterols nanoparticles: Preparation, characterization, and stabilized food-grade pickering emulsions. Zhou S; Han L; Lu K; Qi B; Du X; Liu G; Tang Y; Zhang S; Li Y Food Chem; 2022 Aug; 384():132486. PubMed ID: 35189436 [TBL] [Abstract][Full Text] [Related]
11. Effect of Phytosterols on the Crystallization Behavior of Oil-in-Water Milk Fat Emulsions. Zychowski LM; Logan A; Augustin MA; Kelly AL; Zabara A; O'Mahony JA; Conn CE; Auty MA J Agric Food Chem; 2016 Aug; 64(34):6546-54. PubMed ID: 27476512 [TBL] [Abstract][Full Text] [Related]
12. Pickering emulsions stabilized by luteolin micro-nano particles to improve the oxidative stability of pine nut oil. Wang L; Lu S; Deng Y; Wu W; Wang L; Liu Y; Zu Y; Zhao X J Sci Food Agric; 2021 Mar; 101(4):1314-1322. PubMed ID: 33245580 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of antioxidant pickering emulsions stabilized by zein/chitosan complex particles (ZCPs). Wang LJ; Hu YQ; Yin SW; Yang XQ; Lai FR; Wang SQ J Agric Food Chem; 2015 Mar; 63(9):2514-24. PubMed ID: 25636210 [TBL] [Abstract][Full Text] [Related]
14. Stability, Interfacial Structure, and Gastrointestinal Digestion of β-Carotene-Loaded Pickering Emulsions Co-stabilized by Particles, a Biopolymer, and a Surfactant. Wei Y; Zhou D; Mackie A; Yang S; Dai L; Zhang L; Mao L; Gao Y J Agric Food Chem; 2021 Feb; 69(5):1619-1636. PubMed ID: 33512160 [TBL] [Abstract][Full Text] [Related]
15. Development of Pickering Emulsions Stabilized by Gliadin/Proanthocyanidins Hybrid Particles (GPHPs) and the Fate of Lipid Oxidation and Digestion. Zhou FZ; Yan L; Yin SW; Tang CH; Yang XQ J Agric Food Chem; 2018 Feb; 66(6):1461-1471. PubMed ID: 29350533 [TBL] [Abstract][Full Text] [Related]
16. Structure and properties of Pickering emulsions stabilized solely with novel buckwheat protein colloidal particles. Song S; Li Y; Zhu Q; Zhang X; Wang Y; Tao L; Yu L Int J Biol Macromol; 2023 Jan; 226():61-71. PubMed ID: 36493922 [TBL] [Abstract][Full Text] [Related]
17. Pickering emulsion stabilized by quercetin-β-cyclodextrin-diglyceride particles: Effect of diglyceride content on interfacial behavior and emulsifying property of complex particles. Ye L; Wang Y; Lu X Food Chem; 2024 Oct; 455():139901. PubMed ID: 38833858 [TBL] [Abstract][Full Text] [Related]
19. Palm-based nanofibrillated cellulose (NFC) in carotenoid encapsulation and its incorporation into margarine-like reduced fat spread as fat replacer. Bernice QQL; Chong WT; Thilakarathna RCN; Tong SC; Tang TK; Phuah ET; Lee YY J Food Sci; 2024 Aug; 89(8):5031-5046. PubMed ID: 38992871 [TBL] [Abstract][Full Text] [Related]
20. Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin. Lv P; Wang D; Dai L; Wu X; Gao Y; Yuan F Food Res Int; 2020 Jun; 132():109032. PubMed ID: 32331631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]