These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 38744287)

  • 1. Analyzing the functional effects of DNA variants with gene editing.
    Cooper S; Obolenski S; Waters AJ; Bassett AR; Coelho MA
    Cell Rep Methods; 2024 May; 4(5):100776. PubMed ID: 38744287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9.
    Zhang Y; Karakikes I
    Trends Cardiovasc Med; 2021 Aug; 31(6):341-348. PubMed ID: 32603681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Allele Validation by Gene Editing to Leverage the Wealth of Genetic Resources for Crop Improvement.
    Thomson MJ; Biswas S; Tsakirpaloglou N; Septiningsih EM
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR technologies for genome, epigenome and transcriptome editing.
    Villiger L; Joung J; Koblan L; Weissman J; Abudayyeh OO; Gootenberg JS
    Nat Rev Mol Cell Biol; 2024 Jun; 25(6):464-487. PubMed ID: 38308006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction.
    Cornean A; Gierten J; Welz B; Mateo JL; Thumberger T; Wittbrodt J
    Elife; 2022 Apr; 11():. PubMed ID: 35373735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of Genome Editing and Transcriptional Control Capabilities Reveals Hierarchies among Diverse CRISPR/Cas Systems in Human Cells.
    Escobar M; Li J; Patel A; Liu S; Xu Q; Hilton IB
    ACS Synth Biol; 2022 Oct; 11(10):3239-3250. PubMed ID: 36162812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for the saturation and multiplexing of genetic variants using CRISPR-Cas9.
    Sahu S; Sullivan T; Southon E; Caylor D; Geh J; Sharan SK
    STAR Protoc; 2023 Dec; 4(4):102702. PubMed ID: 37948185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing.
    Saber Sichani A; Ranjbar M; Baneshi M; Torabi Zadeh F; Fallahi J
    Mol Biotechnol; 2023 Jun; 65(6):849-860. PubMed ID: 36547823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A detection method for the capture of genomic signatures: From disease diagnosis to genome editing.
    Benamozig O; Baudrier L; Billon P
    Methods Enzymol; 2021; 661():251-282. PubMed ID: 34776215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR: Groundbreaking technology for RNA-guided genome engineering.
    Cong L
    Anal Biochem; 2017 Sep; 532():87-89. PubMed ID: 28479380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of CRISPR-Based Genome Editing: Survival, Evolution and Challenges.
    Ahmad HI; Ahmad MJ; Asif AR; Adnan M; Iqbal MK; Mehmood K; Muhammad SA; Bhuiyan AA; Elokil A; Du X; Zhao C; Liu X; Xie S
    Curr Issues Mol Biol; 2018; 28():47-68. PubMed ID: 29428910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in CRISPR technologies for genome editing.
    Song M; Koo T
    Arch Pharm Res; 2021 Jun; 44(6):537-552. PubMed ID: 34164771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying gene-editing technology to elucidate the functional consequence of genetic and epigenetic variation in Alzheimer's disease.
    Schrauben M; Dempster E; Lunnon K
    Brain Pathol; 2020 Sep; 30(5):992-1004. PubMed ID: 32654206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Massively parallel base editing to map variant effects in human hematopoiesis.
    Martin-Rufino JD; Castano N; Pang M; Grody EI; Joubran S; Caulier A; Wahlster L; Li T; Qiu X; Riera-Escandell AM; Newby GA; Al'Khafaji A; Chaudhary S; Black S; Weng C; Munson G; Liu DR; Wlodarski MW; Sims K; Oakley JH; Fasano RM; Xavier RJ; Lander ES; Klein DE; Sankaran VG
    Cell; 2023 May; 186(11):2456-2474.e24. PubMed ID: 37137305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breakthrough in CRISPR/Cas system: Current and future directions and challenges.
    Ali A; Zafar MM; Farooq Z; Ahmed SR; Ijaz A; Anwar Z; Abbas H; Tariq MS; Tariq H; Mustafa M; Bajwa MH; Shaukat F; Razzaq A; Maozhi R
    Biotechnol J; 2023 Aug; 18(8):e2200642. PubMed ID: 37166088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology.
    Ishino Y; Krupovic M; Forterre P
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29358495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
    Zhang D; Li Z; Li JF
    J Genet Genomics; 2016 May; 43(5):251-62. PubMed ID: 27165865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives.
    Dong W; Kantor B
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.