These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38744304)
1. Human-like intelligent automatic treatment planning of head and neck cancer radiation therapy. Gao Y; Kyun Park Y; Jia X Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38744304 [No Abstract] [Full Text] [Related]
2. Implementation and evaluation of an intelligent automatic treatment planning robot for prostate cancer stereotactic body radiation therapy. Gao Y; Shen C; Jia X; Kyun Park Y Radiother Oncol; 2023 Jul; 184():109685. PubMed ID: 37120103 [TBL] [Abstract][Full Text] [Related]
3. The development of a deep reinforcement learning network for dose-volume-constrained treatment planning in prostate cancer intensity modulated radiotherapy. Sprouts D; Gao Y; Wang C; Jia X; Shen C; Chi Y Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 35523130 [TBL] [Abstract][Full Text] [Related]
4. A hierarchical deep reinforcement learning framework for intelligent automatic treatment planning of prostate cancer intensity modulated radiation therapy. Shen C; Chen L; Jia X Phys Med Biol; 2021 Jun; 66(13):. PubMed ID: 34107460 [No Abstract] [Full Text] [Related]
5. Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning. Shen C; Nguyen D; Chen L; Gonzalez Y; McBeth R; Qin N; Jiang SB; Jia X Med Phys; 2020 Jun; 47(6):2329-2336. PubMed ID: 32141086 [TBL] [Abstract][Full Text] [Related]
6. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy. Shen C; Chen L; Gonzalez Y; Jia X Med Phys; 2021 Apr; 48(4):1909-1920. PubMed ID: 33432646 [TBL] [Abstract][Full Text] [Related]
7. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN). Li X; Wang C; Sheng Y; Zhang J; Wang W; Yin FF; Wu Q; Wu QJ; Ge Y Med Phys; 2021 Jun; 48(6):2714-2723. PubMed ID: 33577108 [TBL] [Abstract][Full Text] [Related]
8. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer. Shen C; Gonzalez Y; Klages P; Qin N; Jung H; Chen L; Nguyen D; Jiang SB; Jia X Phys Med Biol; 2019 May; 64(11):115013. PubMed ID: 30978709 [TBL] [Abstract][Full Text] [Related]
9. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases. Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357 [TBL] [Abstract][Full Text] [Related]
10. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer. Osman AFI; Tamam NM J Appl Clin Med Phys; 2022 Jul; 23(7):e13630. PubMed ID: 35533234 [TBL] [Abstract][Full Text] [Related]
11. A plan template-based automation solution using a commercial treatment planning system. Huang X; Quan H; Zhao B; Zhou W; Chen C; Chen Y J Appl Clin Med Phys; 2020 May; 21(5):13-25. PubMed ID: 32180351 [TBL] [Abstract][Full Text] [Related]
12. Development of an autonomous treatment planning strategy for radiation therapy with effective use of population-based prior data. Wang H; Dong P; Liu H; Xing L Med Phys; 2017 Feb; 44(2):389-396. PubMed ID: 28133746 [TBL] [Abstract][Full Text] [Related]
13. Application programming in C# environment with recorded user software interactions and its application in autopilot of VMAT/IMRT treatment planning. Wang H; Xing L J Appl Clin Med Phys; 2016 Nov; 17(6):189-203. PubMed ID: 27929493 [TBL] [Abstract][Full Text] [Related]
14. Automatic inverse treatment planning of Gamma Knife radiosurgery via deep reinforcement learning. Liu Y; Shen C; Wang T; Zhang J; Yang X; Liu T; Kahn S; Shu HK; Tian Z Med Phys; 2022 May; 49(5):2877-2889. PubMed ID: 35213936 [TBL] [Abstract][Full Text] [Related]
15. Reduced-order constrained optimization (ROCO): clinical application to head-and-neck IMRT. Rivera L; Yorke E; Kowalski A; Yang J; Radke RJ; Jackson A Med Phys; 2013 Feb; 40(2):021715. PubMed ID: 23387738 [TBL] [Abstract][Full Text] [Related]
16. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning. Li X; Zhang J; Sheng Y; Chang Y; Yin FF; Ge Y; Wu QJ; Wang C Phys Med Biol; 2020 Sep; 65(17):175014. PubMed ID: 32663813 [TBL] [Abstract][Full Text] [Related]
17. Automated 4π radiotherapy treatment planning with evolving knowledge-base. Landers A; O'Connor D; Ruan D; Sheng K Med Phys; 2019 Sep; 46(9):3833-3843. PubMed ID: 31233619 [TBL] [Abstract][Full Text] [Related]
18. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique. Fan J; Wang J; Chen Z; Hu C; Zhang Z; Hu W Med Phys; 2019 Jan; 46(1):370-381. PubMed ID: 30383300 [TBL] [Abstract][Full Text] [Related]
20. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers. Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]