These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 38744811)
1. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Peng F; Liao M; Jin W; Liu W; Li Z; Fan Z; Zou L; Chen S; Zhu L; Zhao Q; Zhan G; Ouyang L; Peng C; Han B; Zhang J; Fu L Signal Transduct Target Ther; 2024 May; 9(1):133. PubMed ID: 38744811 [TBL] [Abstract][Full Text] [Related]
2. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Meng G; Liu J; Liu S; Song Q; Liu L; Xie L; Han Y; Ji Y Br J Pharmacol; 2018 Apr; 175(8):1126-1145. PubMed ID: 28503736 [TBL] [Abstract][Full Text] [Related]
3. MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction. Ding YQ; Zhang YH; Lu J; Li B; Yu WJ; Yue ZB; Hu YH; Wang PX; Li JY; Cai SD; Ye JT; Liu PQ Acta Pharmacol Sin; 2021 Sep; 42(9):1422-1436. PubMed ID: 33247214 [TBL] [Abstract][Full Text] [Related]
4. SZC-6, a small-molecule activator of SIRT3, attenuates cardiac hypertrophy in mice. Li ZY; Lu GQ; Lu J; Wang PX; Zhang XL; Zou Y; Liu PQ Acta Pharmacol Sin; 2023 Mar; 44(3):546-560. PubMed ID: 36042291 [TBL] [Abstract][Full Text] [Related]
5. Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner. Zhang J; Yu J; Chen Y; Liu L; Xu M; Sun L; Luo H; Wang Y; Meng G Oxid Med Cell Longev; 2018; 2018():9396089. PubMed ID: 30647820 [TBL] [Abstract][Full Text] [Related]
6. Sirtuin 3 Deficiency Accelerates Hypertensive Cardiac Remodeling by Impairing Angiogenesis. Wei T; Huang G; Gao J; Huang C; Sun M; Wu J; Bu J; Shen W J Am Heart Assoc; 2017 Aug; 6(8):. PubMed ID: 28862956 [TBL] [Abstract][Full Text] [Related]
7. Glutaredoxin-2 and Sirtuin-3 deficiencies impair cardiac mitochondrial energetics but their effects are not additive. Boardman NT; Migally B; Pileggi C; Parmar GS; Xuan JY; Menzies K; Harper ME Biochim Biophys Acta Mol Basis Dis; 2021 Jan; 1867(1):165982. PubMed ID: 33002579 [TBL] [Abstract][Full Text] [Related]
8. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Pillai VB; Samant S; Sundaresan NR; Raghuraman H; Kim G; Bonner MY; Arbiser JL; Walker DI; Jones DP; Gius D; Gupta MP Nat Commun; 2015 Apr; 6():6656. PubMed ID: 25871545 [TBL] [Abstract][Full Text] [Related]
9. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. Pillai VB; Bindu S; Sharp W; Fang YH; Kim G; Gupta M; Samant S; Gupta MP Am J Physiol Heart Circ Physiol; 2016 Apr; 310(8):H962-72. PubMed ID: 26873966 [TBL] [Abstract][Full Text] [Related]
10. High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3. Guo R; Liu N; Liu H; Zhang J; Zhang H; Wang Y; Baruscotti M; Zhao L; Wang Y Phytomedicine; 2020 Mar; 68():153171. PubMed ID: 32018211 [TBL] [Abstract][Full Text] [Related]
11. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Hafner AV; Dai J; Gomes AP; Xiao CY; Palmeira CM; Rosenzweig A; Sinclair DA Aging (Albany NY); 2010 Dec; 2(12):914-23. PubMed ID: 21212461 [TBL] [Abstract][Full Text] [Related]
12. Receptor-interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes. You J; Yue Z; Chen S; Chen Y; Lu X; Zhang X; Shen P; Li J; Han Q; Li Z; Liu P Acta Physiol (Oxf); 2017 May; 220(1):58-71. PubMed ID: 27614093 [TBL] [Abstract][Full Text] [Related]
13. Sesamin Protects Against Cardiac Remodeling Via Sirt3/ROS Pathway. Fan D; Yang Z; Liu FY; Jin YG; Zhang N; Ni J; Yuan Y; Liao HH; Wu QQ; Xu M; Deng W; Tang QZ Cell Physiol Biochem; 2017; 44(6):2212-2227. PubMed ID: 29248930 [TBL] [Abstract][Full Text] [Related]
14. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Yue Z; Ma Y; You J; Li Z; Ding Y; He P; Lu X; Jiang J; Chen S; Liu P Exp Cell Res; 2016 Oct; 347(2):261-73. PubMed ID: 27423420 [TBL] [Abstract][Full Text] [Related]
15. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Wu J; Zeng Z; Zhang W; Deng Z; Wan Y; Zhang Y; An S; Huang Q; Chen Z Free Radic Res; 2019 Feb; 53(2):139-149. PubMed ID: 30458637 [TBL] [Abstract][Full Text] [Related]
16. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Xu M; Xue RQ; Lu Y; Yong SY; Wu Q; Cui YL; Zuo XT; Yu XJ; Zhao M; Zang WJ Cardiovasc Res; 2019 Mar; 115(3):530-545. PubMed ID: 30165480 [TBL] [Abstract][Full Text] [Related]
17. Angiotensin-(1-7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Guo L; Yin A; Zhang Q; Zhong T; O'Rourke ST; Sun C Am J Physiol Heart Circ Physiol; 2017 May; 312(5):H980-H991. PubMed ID: 28411231 [TBL] [Abstract][Full Text] [Related]
18. Sevoflurane preconditioning alleviates myocardial ischemia reperfusion injury through mitochondrial NAD Qin X; Qin Q; Ran K; Yuan G; Chang Y; Wang Y; Xiao Y Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug; 47(8):1108-1119. PubMed ID: 36097779 [TBL] [Abstract][Full Text] [Related]
19. Exogenous NADPH exerts a positive inotropic effect and enhances energy metabolism via SIRT3 in pathological cardiac hypertrophy and heart failure. Qian K; Tang J; Ling YJ; Zhou M; Yan XX; Xie Y; Zhu LJ; Nirmala K; Sun KY; Qin ZH; Sheng R EBioMedicine; 2023 Dec; 98():104863. PubMed ID: 37950995 [TBL] [Abstract][Full Text] [Related]
20. A machine learning-driven study indicates emodin improves cardiac hypertrophy by modulation of mitochondrial SIRT3 signaling. Gao J; Zhang K; Wang Y; Guo R; Liu H; Jia C; Sun X; Wu C; Wang W; Du J; Chen J Pharmacol Res; 2020 May; 155():104739. PubMed ID: 32135248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]