These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38744843)

  • 1. GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks.
    Zinati Y; Takiddeen A; Emad A
    Nat Commun; 2024 May; 15(1):4055. PubMed ID: 38744843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.
    Lei Y; Huang XT; Guo X; Hang Katie Chan K; Gao L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network.
    Wang Y; Zhou F; Guan J
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38950180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks.
    Mao G; Pang Z; Zuo K; Wang Q; Pei X; Chen X; Liu J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC.
    Kumar N; Mishra B; Athar M; Mukhtar S
    Methods Mol Biol; 2021; 2328():171-182. PubMed ID: 34251625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepIMAGER: Deeply Analyzing Gene Regulatory Networks from scRNA-seq Data.
    Zhou X; Pan J; Chen L; Zhang S; Chen Y
    Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COFFEE: consensus single cell-type specific inference for gene regulatory networks.
    K Lodi M; Chernikov A; Ghosh P
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39311699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data.
    Li Y; Ma A; Wang Y; Guo Q; Wang C; Fu H; Liu B; Ma Q
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39082647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks.
    Shrivastava H; Zhang X; Song L; Aluru S
    J Comput Biol; 2022 Jan; 29(1):27-44. PubMed ID: 35050715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data.
    Liu W; Teng Z; Li Z; Chen J
    Interdiscip Sci; 2024 Dec; 16(4):990-1004. PubMed ID: 38778003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.
    Shojaee A; Huang SC
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data.
    McCalla SG; Fotuhi Siahpirani A; Li J; Pyne S; Stone M; Periyasamy V; Shin J; Roy S
    G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36626328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data.
    Stock M; Popp N; Fiorentino J; Scialdone A
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38627250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data.
    Kim J; T Jakobsen S; Natarajan KN; Won KJ
    Nucleic Acids Res; 2021 Jan; 49(1):e1. PubMed ID: 33170214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell multi-omics analysis identifies context-specific gene regulatory gates and mechanisms.
    Malekpour SA; Haghverdi L; Sadeghi M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38653489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation.
    Jiang H; Wang Y; Yin C; Pan H; Chen L; Feng K; Chang Y; Sun H
    Comput Biol Med; 2024 Aug; 178():108690. PubMed ID: 38879931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gene regulatory network inference model based on pseudo-siamese network.
    Wang Q; Guo M; Chen J; Duan R
    BMC Bioinformatics; 2023 Apr; 24(1):163. PubMed ID: 37085776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scBoolSeq: Linking scRNA-seq statistics and Boolean dynamics.
    Magaña-López G; Calzone L; Zinovyev A; Paulevé L
    PLoS Comput Biol; 2024 Jul; 20(7):e1011620. PubMed ID: 38976751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.