These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. COFFEE: consensus single cell-type specific inference for gene regulatory networks. K Lodi M; Chernikov A; Ghosh P Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39311699 [TBL] [Abstract][Full Text] [Related]
9. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data. Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417 [TBL] [Abstract][Full Text] [Related]
10. Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data. Li Y; Ma A; Wang Y; Guo Q; Wang C; Fu H; Liu B; Ma Q Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39082647 [TBL] [Abstract][Full Text] [Related]
11. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks. Shrivastava H; Zhang X; Song L; Aluru S J Comput Biol; 2022 Jan; 29(1):27-44. PubMed ID: 35050715 [TBL] [Abstract][Full Text] [Related]
12. CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data. Liu W; Teng Z; Li Z; Chen J Interdiscip Sci; 2024 Dec; 16(4):990-1004. PubMed ID: 38778003 [TBL] [Abstract][Full Text] [Related]
13. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions. Shojaee A; Huang SC Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37897702 [TBL] [Abstract][Full Text] [Related]
14. Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data. McCalla SG; Fotuhi Siahpirani A; Li J; Pyne S; Stone M; Periyasamy V; Shin J; Roy S G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36626328 [TBL] [Abstract][Full Text] [Related]
15. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data. Stock M; Popp N; Fiorentino J; Scialdone A Bioinformatics; 2024 May; 40(5):. PubMed ID: 38627250 [TBL] [Abstract][Full Text] [Related]
16. TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data. Kim J; T Jakobsen S; Natarajan KN; Won KJ Nucleic Acids Res; 2021 Jan; 49(1):e1. PubMed ID: 33170214 [TBL] [Abstract][Full Text] [Related]
18. SLIVER: Unveiling large scale gene regulatory networks of single-cell transcriptomic data through causal structure learning and modules aggregation. Jiang H; Wang Y; Yin C; Pan H; Chen L; Feng K; Chang Y; Sun H Comput Biol Med; 2024 Aug; 178():108690. PubMed ID: 38879931 [TBL] [Abstract][Full Text] [Related]
19. A gene regulatory network inference model based on pseudo-siamese network. Wang Q; Guo M; Chen J; Duan R BMC Bioinformatics; 2023 Apr; 24(1):163. PubMed ID: 37085776 [TBL] [Abstract][Full Text] [Related]