These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38744914)

  • 1. Structural basis of the Meinwald rearrangement catalysed by styrene oxide isomerase.
    Khanppnavar B; Choo JPS; Hagedoorn PL; Smolentsev G; Štefanić S; Kumaran S; Tischler D; Winkler FK; Korkhov VM; Li Z; Kammerer RA; Li X
    Nat Chem; 2024 Sep; 16(9):1496-1504. PubMed ID: 38744914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Styrene Oxide Isomerase-Catalyzed Meinwald Rearrangement in Cascade Biotransformations: Synthesis of Chiral and/or Natural Chemicals.
    See WWL; Li Z
    Chemistry; 2023 May; 29(25):e202300102. PubMed ID: 36740917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-Catalyzed Meinwald Rearrangement with an Unusual Regioselective and Stereospecific 1,2-Methyl Shift.
    Xin R; See WWL; Yun H; Li X; Li Z
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202204889. PubMed ID: 35535736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Styrene oxide isomerase of Sphingopyxis sp. Kp5.2.
    Oelschlägel M; Zimmerling J; Schlömann M; Tischler D
    Microbiology (Reading); 2014 Nov; 160(Pt 11):2481-2491. PubMed ID: 25187627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme.
    Oelschlägel M; Gröning JA; Tischler D; Kaschabek SR; Schlömann M
    Appl Environ Microbiol; 2012 Jun; 78(12):4330-7. PubMed ID: 22504818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and catalytic properties of new epoxide hydrolases from the genomic data of soil bacteria.
    Stojanovski G; Dobrijevic D; Hailes HC; Ward JM
    Enzyme Microb Technol; 2020 Sep; 139():109592. PubMed ID: 32732040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous production of different styrene oxide isomerases for the highly efficient synthesis of phenylacetaldehyde.
    Oelschlägel M; Richter L; Stuhr A; Hofmann S; Schlömann M
    J Biotechnol; 2017 Jun; 252():43-49. PubMed ID: 28472670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The isomerase and hydratase reaction mechanism of the crotonase active site of the multifunctional enzyme (type-1), as deduced from structures of complexes with 3S-hydroxy-acyl-CoA.
    Kasaragod P; Schmitz W; Hiltunen JK; Wierenga RK
    FEBS J; 2013 Jul; 280(13):3160-75. PubMed ID: 23351063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Styrene Oxide Isomerase, a Key Enzyme of Styrene and Styrene Oxide Metabolism in Corynehacterium sp.
    Itch N; Hayashi K; Okada K; Ito T; Mizuguchi N
    Biosci Biotechnol Biochem; 1997 Jan; 61(12):2058-62. PubMed ID: 27396882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient synthesis of 2-amino alcohols by silica gel catalysed opening of epoxide rings by amines.
    Chakraborti AK; Rudrawar S; Kondaskar A
    Org Biomol Chem; 2004 May; 2(9):1277-80. PubMed ID: 15105916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epoxide-hydrolase-initiated hydrolysis/rearrangement cascade of a methylene-interrupted bis-epoxide yields chiral THF moieties without involvement of a "cyclase".
    Ueberbacher BT; Oberdorfer G; Gruber K; Faber K
    Chembiochem; 2009 Jul; 10(10):1697-704. PubMed ID: 19496106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient chemoenzymatic synthesis of α-aryl aldehydes as intermediates in C-C bond forming biocatalytic cascades.
    Meza A; Campbell ME; Zmich A; Thein SA; Grieger AM; McGill MJ; Willoughby PH; Buller AR
    ACS Catal; 2022 Sep; 12(17):10700-10710. PubMed ID: 36420479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-dependent hysteretic behavior in StEH1-catalyzed hydrolysis of styrene oxide derivatives.
    Lindberg D; Gogoll A; Widersten M
    FEBS J; 2008 Dec; 275(24):6309-20. PubMed ID: 19016837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the origins of selectivity in soluble epoxide hydrolase from Bacillus megaterium.
    Serrano-Hervás E; Garcia-Borràs M; Osuna S
    Org Biomol Chem; 2017 Oct; 15(41):8827-8835. PubMed ID: 29026902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electric field-induced change in the selectivity of a metal oxide-catalyzed epoxide rearrangement.
    Gorin CF; Beh ES; Kanan MW
    J Am Chem Soc; 2012 Jan; 134(1):186-9. PubMed ID: 22191979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-duty isomerases: a case study of isomerization-coupled enzymatic catalysis.
    Solano YJ; Kiser PD
    Trends Biochem Sci; 2024 Aug; 49(8):703-716. PubMed ID: 38760195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total synthesis of capsanthin using lewis acid-promoted regio- and stereoselective rearrangement of tetrasubstituted epoxide.
    Yamano Y; Ito M
    Chem Pharm Bull (Tokyo); 2001 Dec; 49(12):1662-3. PubMed ID: 11767096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of a recombinant membrane protein in an
    Oelschlägel M; Heiland C; Schlömann M; Tischler D
    Biotechnol Rep (Amst); 2015 Sep; 7():38-43. PubMed ID: 28626713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formal [3+2] Cycloaddition Reactions of Electron-Rich Aryl Epoxides with Alkenes under Lewis Acid Catalysis Affording Tetrasubstituted Tetrahydrofurans.
    Macías-Villamizar VE; Cuca-Suárez L; Rodríguez S; González FV
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32041165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory-Evolved Enzymes Provide Snapshots of the Development of Enantioconvergence in Enzyme-Catalyzed Epoxide Hydrolysis.
    Janfalk Carlsson Å; Bauer P; Dobritzsch D; Nilsson M; Kamerlin SC; Widersten M
    Chembiochem; 2016 Sep; 17(18):1693-7. PubMed ID: 27383542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.