These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38744948)

  • 1. Nonlinear evolution characteristics and seepage mechanical model of fluids in broken rock mass based on the bifurcation theory.
    Yunlong J; Zhengzheng C; Zhenhua L; Feng D; Cunhan H; Haixiao L; Wenqiang W; Minglei Z
    Sci Rep; 2024 May; 14(1):10982. PubMed ID: 38744948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical research on disastrous mechanism of seepage instability of karst collapse column considering variable mass effect.
    Zhengzheng C; Shuaiyang Z; Zhenhua L; Feng D; Cunhan H; Wenqiang W
    Sci Rep; 2024 Jun; 14(1):13900. PubMed ID: 38886402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rock Damage Model Coupled Stress-Seepage and Its Application in Water Inrush from Faults in Coal Mines.
    Shao J; Zhang W; Wu X; Lei Y; Wu X
    ACS Omega; 2022 Apr; 7(16):13604-13614. PubMed ID: 35559151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seepage evolution characteristics and water inrush mechanism in collapse column under mining influence.
    Yongjiang W; Zhengzheng C; Zhenhua L; Feng D; Wenqiang W; Minglei Z; Zijie H; Yi X
    Sci Rep; 2024 Mar; 14(1):5862. PubMed ID: 38467665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of broken rock in shallow gobs for mitigating mining-induced water inrush disaster risks and environmental damage: Experimental study and permeability model.
    Miao K; Tu S; Wang Y; Li J; Zhao H; Guo B
    Sci Total Environ; 2023 Dec; 903():166812. PubMed ID: 37673245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the Evolution of Fault Permeability and the Retention of Coal (Rock) Pillar under the Mining Conditions of Thick Coal Seam in the Footwall of Large Normal Fault.
    Yin H; Tang R; Xie D; Lang N; Li S; Zhang X; Cheng Y; Wang S; Li A
    ACS Omega; 2023 Jan; 8(4):4187-4195. PubMed ID: 36743042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear seepage erosion model of water inrush considering particle size distribution of karst collapse column and its engineering applications.
    Yang B; Shi W; Yang X
    Sci Rep; 2022 Oct; 12(1):17078. PubMed ID: 36224277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-crushing process and non-Darcian seepage characteristics of broken coal medium in coal mine water inrush.
    Pang M; Zhang T; Guo Y; Zhang L
    Sci Rep; 2021 May; 11(1):11380. PubMed ID: 34059714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar.
    Ma D; Wang J; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preventing water inrush hazards in coal mines by coal gangue backfilling in gobs: influences of the particle size and stress on seepage characteristics.
    Guo Y; Zhang J; Li M; Wang L; Li Z
    Environ Sci Pollut Res Int; 2023 Oct; 30(47):104374-104387. PubMed ID: 37700127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on the seepage mutation of natural karst collapse pillar (KCP) fillings over mass outflow.
    Zhang B; Liu G; Li Y; Lin Z
    Environ Sci Pollut Res Int; 2023 Nov; 30(51):110995-111007. PubMed ID: 37798525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of spatial structure migration of overlying strata on water storage of underground reservoir in coal mine.
    Cao Z; Jing S; Wang L; Meng F; Han Y
    PLoS One; 2024; 19(1):e0292357. PubMed ID: 38285694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of particle size on non-Darcy seepage of water and sediment in fractured rock.
    Liu Y; Li S
    Springerplus; 2016; 5(1):2099. PubMed ID: 28053829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gray Evaluation of Water Inrush Risk in Deep Mining Floor.
    Qu X; Yu X; Qu X; Qiu M; Gao W
    ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of the activation of mining faults and grouting reinforcement under thick loose layer and thin bedrock.
    Zhang W; Lei Y; Shao J; Wu X; Li S; Ma C
    Sci Rep; 2022 Oct; 12(1):17049. PubMed ID: 36220976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mine Water Inrush Risk Assessment Evaluation Based on the GIS and Combination Weight-Cloud Model: A Case Study.
    Liu W; Han M; Meng X; Qin Y
    ACS Omega; 2021 Dec; 6(48):32671-32681. PubMed ID: 34901616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study.
    Yang B; Yang T; Xu Z; Liu H; Shi W; Yang X
    R Soc Open Sci; 2018 Feb; 5(2):172109. PubMed ID: 29515904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise application of grouting technology in underground coal mining: water inrush risk of floor elimination.
    Zhai M; Bai H
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24361-24376. PubMed ID: 36342607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water Conductivity Evaluation of Fault F22 Based on Comprehensive Analysis of Multisource Information.
    Han J; Wang F; Xie D; Zhang H; Hou Z; Jiang X
    ACS Omega; 2022 Oct; 7(42):37683-37693. PubMed ID: 36312402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.