These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38744952)

  • 1. Exploring the prognostic significance of arm-level copy number alterations in triple-negative breast cancer.
    Doré S; Ali M; Sorin M; McDowell SAC; Desharnais L; Breton V; Yu MW; Arabzadeh A; Ryan MI; Milette S; Quail DF; Walsh LA
    Oncogene; 2024 Jun; 43(26):2015-2024. PubMed ID: 38744952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of Cell-Free DNA Tumor Fraction and Somatic Copy Number Alterations With Survival in Metastatic Triple-Negative Breast Cancer.
    Stover DG; Parsons HA; Ha G; Freeman SS; Barry WT; Guo H; Choudhury AD; Gydush G; Reed SC; Rhoades J; Rotem D; Hughes ME; Dillon DA; Partridge AH; Wagle N; Krop IE; Getz G; Golub TR; Love JC; Winer EP; Tolaney SM; Lin NU; Adalsteinsson VA
    J Clin Oncol; 2018 Feb; 36(6):543-553. PubMed ID: 29298117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of whole-genome sequencing and functional screening identifies a prognostic signature for lung metastasis in triple-negative breast cancer.
    Xie G; Yang H; Ma D; Sun Y; Chen H; Hu X; Jiang YZ; Shao ZM
    Int J Cancer; 2019 Nov; 145(10):2850-2860. PubMed ID: 30977117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breast and prostate cancers harbor common somatic copy number alterations that consistently differ by race and are associated with survival.
    Chen Y; Sadasivan SM; She R; Datta I; Taneja K; Chitale D; Gupta N; Davis MB; Newman LA; Rogers CG; Paris PL; Li J; Rybicki BA; Levin AM
    BMC Med Genomics; 2020 Aug; 13(1):116. PubMed ID: 32819446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher levels of TIMP-1 expression are associated with a poor prognosis in triple-negative breast cancer.
    Cheng G; Fan X; Hao M; Wang J; Zhou X; Sun X
    Mol Cancer; 2016 Apr; 15(1):30. PubMed ID: 27130446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDSS1-Mediated Activation of CAMK2A-STAT3 Signaling Promotes Metastasis in Triple-Negative Breast Cancer.
    Yu TJ; Liu YY; Li XG; Lian B; Lu XX; Jin X; Shao ZM; Hu X; Di GH; Jiang YZ
    Cancer Res; 2021 Nov; 81(21):5491-5505. PubMed ID: 34408002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. circKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer.
    Tang H; Huang X; Wang J; Yang L; Kong Y; Gao G; Zhang L; Chen ZS; Xie X
    Mol Cancer; 2019 Feb; 18(1):23. PubMed ID: 30744636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MTBP is overexpressed in triple-negative breast cancer and contributes to its growth and survival.
    Grieb BC; Chen X; Eischen CM
    Mol Cancer Res; 2014 Sep; 12(9):1216-24. PubMed ID: 24866769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly heterogeneous-related genes of triple-negative breast cancer: potential diagnostic and prognostic biomarkers.
    Liu Y; Teng L; Fu S; Wang G; Li Z; Ding C; Wang H; Bi L
    BMC Cancer; 2021 May; 21(1):644. PubMed ID: 34053447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory T cells are associated with the tumor immune microenvironment and immunotherapy response in triple-negative breast cancer.
    Huang P; Zhou X; Zheng M; Yu Y; Jin G; Zhang S
    Front Immunol; 2023; 14():1263537. PubMed ID: 37767092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiling molecular regulators of recurrence in chemorefractory triple-negative breast cancers.
    Hancock BA; Chen YH; Solzak JP; Ahmad MN; Wedge DC; Brinza D; Scafe C; Veitch J; Gottimukkala R; Short W; Atale RV; Ivan M; Badve SS; Schneider BP; Lu X; Miller KD; Radovich M
    Breast Cancer Res; 2019 Aug; 21(1):87. PubMed ID: 31383035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LncRNA LUCAT1 facilitates tumorigenesis and metastasis of triple-negative breast cancer through modulating miR-5702.
    Mou E; Wang H
    Biosci Rep; 2019 Sep; 39(9):. PubMed ID: 31399501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer.
    Gagliardi M; Pitner MK; Park J; Xie X; Saso H; Larson RA; Sammons RM; Chen H; Wei C; Masuda H; Chauhan G; Kondo K; Tripathy D; Ueno NT; Dalby KN; Debeb BG; Bartholomeusz C
    Sci Rep; 2020 May; 10(1):8537. PubMed ID: 32444778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingosine Kinase 1 Signaling Promotes Metastasis of Triple-Negative Breast Cancer.
    Acharya S; Yao J; Li P; Zhang C; Lowery FJ; Zhang Q; Guo H; Qu J; Yang F; Wistuba II; Piwnica-Worms H; Sahin AA; Yu D
    Cancer Res; 2019 Aug; 79(16):4211-4226. PubMed ID: 31239273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the driver miRNAs with somatic copy number alterations driving dysregulated ceRNA networks in cancers.
    Dou R; Kang S; Yang H; Zhang W; Zhang Y; Liu Y; Ping Y; Pang B
    Biol Direct; 2023 Nov; 18(1):79. PubMed ID: 37993951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PYCR3 modulates mtDNA copy number to drive proliferation and doxorubicin resistance in triple-negative breast cancer.
    Zhuang F; Huang S; Liu L
    Int J Biochem Cell Biol; 2024 Jun; 171():106581. PubMed ID: 38642827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-β/SMAD signaling.
    Jiang HL; Sun HF; Gao SP; Li LD; Hu X; Wu J; Jin W
    Oncotarget; 2015 Jun; 6(18):16352-65. PubMed ID: 25970785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve growth factor receptor increases the tumor growth and metastatic potential of triple-negative breast cancer cells.
    Wu R; Li K; Yuan M; Luo KQ
    Oncogene; 2021 Mar; 40(12):2165-2181. PubMed ID: 33627781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-species genomic and functional analyses identify a combination therapy using a CHK1 inhibitor and a ribonucleotide reductase inhibitor to treat triple-negative breast cancer.
    Bennett CN; Tomlinson CC; Michalowski AM; Chu IM; Luger D; Mittereder LR; Aprelikova O; Shou J; Piwinica-Worms H; Caplen NJ; Hollingshead MG; Green JE
    Breast Cancer Res; 2012 Jul; 14(4):R109. PubMed ID: 22812567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiomics analysis reveals CT83 is the most specific gene for triple negative breast cancer and its hypomethylation is oncogenic in breast cancer.
    Chen C; Gao D; Huo J; Qu R; Guo Y; Hu X; Luo L
    Sci Rep; 2021 Jun; 11(1):12172. PubMed ID: 34108519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.