These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 38745054)
1. Comparative transcriptomic and physiological analyses unravel wheat source root adaptation to phosphorous deficiency. Luo D; Usman M; Pang F; Zhang W; Qin Y; Li Q; Li Y; Xing Y; Dong D Sci Rep; 2024 May; 14(1):11050. PubMed ID: 38745054 [TBL] [Abstract][Full Text] [Related]
2. Commonalities and Specificities in Wheat ( Luo D; Li Q; Pang F; Zhang W; Li Y; Xing Y; Dong D Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273221 [TBL] [Abstract][Full Text] [Related]
3. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Low Phosphorus Tolerance in Wheat Seedling. Li P; Ma X; Wang J; Yao L; Li B; Meng Y; Si E; Yang K; Shang X; Zhang X; Wang H Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834288 [TBL] [Abstract][Full Text] [Related]
4. TaMYB-CC5 gene specifically expressed in root improve tolerance of phosphorus deficiency and drought stress in wheat. Zheng L; Kong YN; Yan XC; Liu YX; Wang XR; Zhang JP; Qi XL; Cao XY; Zhang SX; Liu YW; Zheng JC; Wang C; Hou ZH; Chen J; Zhou YB; Chen M; Ma YZ; Xu ZS; Lan JH Plant Physiol Biochem; 2024 Oct; 215():109011. PubMed ID: 39128403 [TBL] [Abstract][Full Text] [Related]
5. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.). Hu H; He J; Zhao J; Ou X; Li H; Ru Z Genes Genomics; 2018 Nov; 40(11):1199-1211. PubMed ID: 30315523 [TBL] [Abstract][Full Text] [Related]
6. Root transcriptome profiling of contrasting wheat genotypes provides an insight to their adaptive strategies to water deficit. Mia MS; Liu H; Wang X; Zhang C; Yan G Sci Rep; 2020 Mar; 10(1):4854. PubMed ID: 32184417 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress. Hu L; Lv X; Zhang Y; Du W; Fan S; Kong L Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408761 [TBL] [Abstract][Full Text] [Related]
8. Deciphering the change in root system architectural traits under limiting and non-limiting phosphorus in Indian bread wheat germplasm. Dharmateja P; Kumar M; Pandey R; Mandal PK; Babu P; Bainsla NK; Gaikwad KB; Tomar V; Kranthi Kumar K; Dhar N; Ansari R; Saifi N; Yadav R PLoS One; 2021; 16(10):e0255840. PubMed ID: 34597303 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis in roots and leaves of wheat seedlings in response to low-phosphorus stress. Wang J; Qin Q; Pan J; Sun L; Sun Y; Xue Y; Song K Sci Rep; 2019 Dec; 9(1):19802. PubMed ID: 31875036 [TBL] [Abstract][Full Text] [Related]
10. Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea ( Bhaskarla V; Zinta G; Ford R; Jain M; Varshney RK; Mantri N Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150870 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress. Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075 [TBL] [Abstract][Full Text] [Related]
12. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. Chen Z; Song J; Li X; Arango J; Cardoso JA; Rao I; Schultze-Kraft R; Peters M; Mo X; Liu G BMC Plant Biol; 2021 Oct; 21(1):466. PubMed ID: 34645406 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Chen D; Chai S; McIntyre CL; Xue GP Plant Cell Rep; 2018 Feb; 37(2):225-237. PubMed ID: 29079898 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome unveiled the gene expression patterns of root architecture in drought-tolerant and sensitive wheat genotypes. Rasool F; Khan MR; Schneider M; Uzair M; Aqeel M; Ajmal W; Léon J; Naz AA Plant Physiol Biochem; 2022 May; 178():20-30. PubMed ID: 35247694 [TBL] [Abstract][Full Text] [Related]
16. The involvement of expansins in responses to phosphorus availability in wheat, and its potentials in improving phosphorus efficiency of plants. Han YY; Zhou S; Chen YH; Kong X; Xu Y; Wang W Plant Physiol Biochem; 2014 May; 78():53-62. PubMed ID: 24636907 [TBL] [Abstract][Full Text] [Related]
17. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Placido DF; Campbell MT; Folsom JJ; Cui X; Kruger GR; Baenziger PS; Walia H Plant Physiol; 2013 Apr; 161(4):1806-19. PubMed ID: 23426195 [TBL] [Abstract][Full Text] [Related]
18. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Yang T; Yao S; Hao L; Zhao Y; Lu W; Xiao K Plant Cell Rep; 2016 Nov; 35(11):2309-2323. PubMed ID: 27541276 [TBL] [Abstract][Full Text] [Related]
19. Comparative Transcriptome Analysis Reveals the Genes and Pathways Related to Wheat Root Hair Length. Zeng J; Wang Y; Wu G; Sun Q; He X; Zhang X; Sun X; Zhao Y; Liu W; Xu D; Dai X; Ma W Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396749 [TBL] [Abstract][Full Text] [Related]
20. Exploring the dynamic adaptive responses of Epimedium pubescens to phosphorus deficiency by Integrated transcriptome and miRNA analysis. Liu S; An X; Xu C; Guo B; Li X; Chen C; He D; Xu D; Li Y BMC Plant Biol; 2024 May; 24(1):480. PubMed ID: 38816792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]