These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 38745212)
1. A taste of wilderness: supplementary feeding of red deer (Cervus elaphus) increases individual bacterial microbiota diversity but lowers abundance of important gut symbionts. VĂquez-R L; Henrich M; Riegel V; Bader M; Wilhelm K; Heurich M; Sommer S Anim Microbiome; 2024 May; 6(1):28. PubMed ID: 38745212 [TBL] [Abstract][Full Text] [Related]
2. High-Energy Supplemental Feeding Shifts Gut Microbiota Composition and Function in Red Deer ( Zheng P; Gao W; Cong S; Leng L; Wang T; Shi L Animals (Basel); 2024 May; 14(10):. PubMed ID: 38791646 [TBL] [Abstract][Full Text] [Related]
3. Integrated omics analysis reveals the alteration of gut microbiota and fecal metabolites in Cervus elaphus kansuensis. Zhang Z; Bao C; Li Z; He C; Jin W; Li C; Chen Y Appl Microbiol Biotechnol; 2024 Dec; 108(1):125. PubMed ID: 38229330 [TBL] [Abstract][Full Text] [Related]
4. Growth Stages and Inter-Species Gut Microbiota Composition and Function in Captive Red Deer ( Zhao Y; Sun J; Ding M; Hayat Khattak R; Teng L; Liu Z Animals (Basel); 2023 Feb; 13(4):. PubMed ID: 36830340 [TBL] [Abstract][Full Text] [Related]
5. Changes in Gut Microbiota Composition Associated with the Presence of Enteric Protist Deng L; Chen S; Meng W; Zhou Z; Liu H; Zhong Z; Fu H; Shen L; Cao S; Tan KSW; Peng G Microbiol Spectr; 2022 Aug; 10(4):e0226921. PubMed ID: 35736237 [No Abstract] [Full Text] [Related]
6. Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. Guan Y; Yang H; Han S; Feng L; Wang T; Ge J AMB Express; 2017 Nov; 7(1):212. PubMed ID: 29170893 [TBL] [Abstract][Full Text] [Related]
7. Uncovering the Fecal Bacterial Communities of Sympatric Sika Deer ( Yan J; Wu X; Wang X; Shang Y; Zhang H Animals (Basel); 2022 Sep; 12(18):. PubMed ID: 36139327 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk deer. Jiang F; Song P; Wang H; Zhang J; Liu D; Cai Z; Gao H; Chi X; Zhang T Appl Microbiol Biotechnol; 2022 Feb; 106(3):1325-1339. PubMed ID: 35037997 [TBL] [Abstract][Full Text] [Related]
9. Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer ( You Z; Deng J; Liu J; Fu J; Xiong H; Luo W; Xiong J PeerJ; 2022; 10():e13753. PubMed ID: 35873913 [TBL] [Abstract][Full Text] [Related]
10. Marked Seasonal Variation in Structure and Function of Gut Microbiota in Forest and Alpine Musk Deer. Jiang F; Gao H; Qin W; Song P; Wang H; Zhang J; Liu D; Wang D; Zhang T Front Microbiol; 2021; 12():699797. PubMed ID: 34552569 [TBL] [Abstract][Full Text] [Related]
11. Diet-induced microbial adaptation process of red deer ( Guo J; Jin Y; Tian X; Bao H; Sun Y; Gray T; Song Y; Zhang M Front Microbiol; 2022; 13():1033050. PubMed ID: 36338061 [TBL] [Abstract][Full Text] [Related]
12. Alterations in Fecal Microbiota Linked to Environment and Sex in Red Deer ( Sun Y; Yu Y; Guo J; Zhong L; Zhang M Animals (Basel); 2023 Mar; 13(5):. PubMed ID: 36899786 [TBL] [Abstract][Full Text] [Related]
13. Lower dietary concentrate level increases bacterial diversity in the rumen of Cervus elaphus yarkandensis. Qian W; Ao W; Hui X; Wu J Can J Microbiol; 2018 Jul; 64(7):501-509. PubMed ID: 29562140 [TBL] [Abstract][Full Text] [Related]
14. The impact of anthelmintic treatment on gut bacterial and fungal communities in diagnosed parasite-free sika deer Cervus nippon. Hu X; Xu Y; Liu G; Hu D; Wang Y; Zhang W; Zheng Y Appl Microbiol Biotechnol; 2020 Nov; 104(21):9239-9250. PubMed ID: 32930840 [TBL] [Abstract][Full Text] [Related]
15. Marked variations in gut microbial diversity, functions, and disease risk between wild and captive alpine musk deer. Jiang F; Song P; Liu D; Zhang J; Qin W; Wang H; Liang C; Gao H; Zhang T Appl Microbiol Biotechnol; 2023 Sep; 107(17):5517-5529. PubMed ID: 37421471 [TBL] [Abstract][Full Text] [Related]
16. Hybridization alters red deer gut microbiome and metabolites. Wei L; Zeng B; Li B; Guo W; Mu Z; Gan Y; Li Y Front Microbiol; 2024; 15():1387957. PubMed ID: 38784815 [TBL] [Abstract][Full Text] [Related]
17. Gastrointestinal Biogeography of Luminal Microbiota and Short-Chain Fatty Acids in Sika Deer (Cervus nippon). Hu X; Wei Y; Zhang T; Wang X; Xu Y; Zhang W; Zheng Y Appl Environ Microbiol; 2022 Sep; 88(17):e0049922. PubMed ID: 35950850 [TBL] [Abstract][Full Text] [Related]
18. Analysis on Changes and Influencing Factors of the Intestinal Microbiota of Alpine Musk Deer between the Place of Origin and Migration. Zhang B; Shi M; Xu S; Zhang H; Li Y; Hu D Animals (Basel); 2023 Dec; 13(24):. PubMed ID: 38136828 [TBL] [Abstract][Full Text] [Related]
19. Comparative study of the function and structure of the gut microbiota in Siberian musk deer and Forest musk deer. Su R; Dalai M; Luvsantseren B; Chimedtseren C; Hasi S Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6799-6817. PubMed ID: 36100751 [TBL] [Abstract][Full Text] [Related]
20. Spatial variation in red deer density in a transboundary forest ecosystem. Tourani M; Franke F; Heurich M; Henrich M; Peterka T; Ebert C; Oeser J; Edelhoff H; Milleret C; Dupont P; Bischof R; Peters W Sci Rep; 2023 Mar; 13(1):4561. PubMed ID: 36941335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]