These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38745694)

  • 1. Identifying heterogeneous micromechanical properties of biological tissues via physics-informed neural networks.
    Wu W; Daneker M; Turner KT; Jolley MA; Lu L
    ArXiv; 2024 Jul; ():. PubMed ID: 38745694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics-Informed Neural Networks.
    Wu W; Daneker M; Turner KT; Jolley MA; Lu L
    Small Methods; 2024 Aug; ():e2400620. PubMed ID: 39091065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated model discovery for muscle using constitutive recurrent neural networks.
    Wang LM; Linka K; Kuhl E
    J Mech Behav Biomed Mater; 2023 Sep; 145():106021. PubMed ID: 37473576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying constitutive parameters for complex hyperelastic materials using physics-informed neural networks.
    Song S; Jin H
    Soft Matter; 2024 Jul; 20(30):5915-5926. PubMed ID: 38954481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering 3D hidden elasticity in isotropic and transversely isotropic materials with physics-informed UNets.
    Kamali A; Laksari K
    Acta Biomater; 2024 Aug; 184():254-263. PubMed ID: 38960112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
    Donmazov S; Saruhan EN; Pekkan K; Piskin S
    Cardiovasc Eng Technol; 2024 Jul; ():. PubMed ID: 38956008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio.
    Kamali A; Sarabian M; Laksari K
    Acta Biomater; 2023 Jan; 155():400-409. PubMed ID: 36402297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review.
    Wex C; Arndt S; Stoll A; Bruns C; Kupriyanova Y
    Biomed Tech (Berl); 2015 Dec; 60(6):577-92. PubMed ID: 26087063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics.
    Wu W; Daneker M; Jolley MA; Turner KT; Lu L
    Appl Math Mech; 2023 Jul; 44(7):1039-1068. PubMed ID: 37501681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle.
    Ballit A; Dao TT
    Med Biol Eng Comput; 2022 Apr; 60(4):1177-1185. PubMed ID: 35244859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of hyperelastic constitutive models applicable to brain and fat tissues.
    Mihai LA; Chin L; Janmey PA; Goriely A
    J R Soc Interface; 2015 Sep; 12(110):0486. PubMed ID: 26354826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics-informed UNets for discovering hidden elasticity in heterogeneous materials.
    Kamali A; Laksari K
    J Mech Behav Biomed Mater; 2024 Feb; 150():106228. PubMed ID: 37988884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AI-dente: an open machine learning based tool to interpret nano-indentation data of soft tissues and materials.
    Giolando P; Kakaletsis S; Zhang X; Weickenmeier J; Castillo E; Dortdivanlioglu B; Rausch MK
    Soft Matter; 2023 Sep; 19(35):6710-6720. PubMed ID: 37622379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated model discovery for human brain using Constitutive Artificial Neural Networks.
    Linka K; St Pierre SR; Kuhl E
    Acta Biomater; 2023 Apr; 160():134-151. PubMed ID: 36736643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity.
    Roy AM; Bose R; Sundararaghavan V; Arróyave R
    Neural Netw; 2023 May; 162():472-489. PubMed ID: 36966712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials.
    Zhang MG; Cao YP; Li GY; Feng XQ
    Biomech Model Mechanobiol; 2014 Jan; 13(1):1-11. PubMed ID: 23483348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hyperelastic model to capture the mechanical behaviour and histological aspects of the soft tissues.
    Dwivedi KK; Lakhani P; Kumar S; Kumar N
    J Mech Behav Biomed Mater; 2022 Feb; 126():105013. PubMed ID: 34920323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Analytical Extraction of the Hyperelastic Constants for the Two-Parameter Mooney-Rivlin Model from Experiments on Soft Polymers.
    Gopesh T; Friend J
    Soft Robot; 2021 Aug; 8(4):365-370. PubMed ID: 32758067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.