These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38745922)

  • 1. Identification and expression profiling of
    Xu J; Wang R; Zhang X; Zhuang W; Zhang Y; Lin J; Zhan P; Chen S; Lu H; Wang A; Liao C
    Front Plant Sci; 2024; 15():1360024. PubMed ID: 38745922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Structures and Evolution Analysis of
    Wang L; Liu F; Ju L; Xue B; Wang Y; Wang D; Hou D
    Front Plant Sci; 2022; 13():854034. PubMed ID: 35463405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L.
    Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L
    BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brassica napus Genome Possesses Extraordinary High Number of CAMTA Genes and CAMTA3 Contributes to PAMP Triggered Immunity and Resistance to Sclerotinia sclerotiorum.
    Rahman H; Xu YP; Zhang XR; Cai XZ
    Front Plant Sci; 2016; 7():581. PubMed ID: 27200054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Identification of GYF-Domain Encoding Genes in Three
    Zhang X; Qin L; Lu J; Xia Y; Tang X; Lu X; Xia S
    Genes (Basel); 2023 Jan; 14(1):. PubMed ID: 36672966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Identification, Evolution, and Comparative Analysis of B-Box Genes in
    Singh S; Chhapekar SS; Ma Y; Rameneni JJ; Oh SH; Kim J; Lim YP; Choi SR
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification of biotin carboxyl carrier subunits of acetyl-CoA carboxylase in Brassica and their role in stress tolerance in oilseed Brassica napus.
    Megha S; Wang Z; Kav NNV; Rahman H
    BMC Genomics; 2022 Oct; 23(1):707. PubMed ID: 36253756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Identification and Expression Analysis of
    Xue Y; Zhang C; Shan R; Li X; Tseke Inkabanga A; Li L; Jiang H; Chai Y
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and functional diversity of lipoxygenase (LOX) genes in allotetraploid rapeseed (Brassica napus L.).
    Kang Y; Liu W; Guan C; Guan M; He X
    Int J Biol Macromol; 2021 Oct; 188():844-854. PubMed ID: 34416264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification and functional analysis of cupin_1 domain-containing members involved in the responses to
    He Y; Li Y; Bai Z; Xie M; Zuo R; Liu J; Xia J; Cheng X; Liu Y; Tong C; Zhang Y; Liu S
    Front Plant Sci; 2022; 13():983786. PubMed ID: 35979083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum.
    Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL
    Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus.
    Joshi RK; Megha S; Basu U; Rahman MH; Kav NN
    PLoS One; 2016; 11(7):e0158784. PubMed ID: 27388760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Characterization of the Cystine-Rich-Receptor-like Kinases (
    Sarwar R; Li L; Yu J; Zhang Y; Geng R; Meng Q; Zhu K; Tan XL
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Characterization of the
    Zuo R; Xie M; Gao F; Sumbal W; Cheng X; Liu Y; Bai Z; Liu S
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L.
    He X; Kang Y; Li W; Liu W; Xie P; Liao L; Huang L; Yao M; Qian L; Liu Z; Guan C; Guan M; Hua W
    BMC Genomics; 2020 Oct; 21(1):736. PubMed ID: 33092535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus.
    Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G
    PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus.
    Seifbarghi S; Borhan MH; Wei Y; Coutu C; Robinson SJ; Hegedus DD
    BMC Genomics; 2017 Mar; 18(1):266. PubMed ID: 28356071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing.
    Lin L; Fan J; Li P; Liu D; Ren S; Lin K; Fang Y; Lin C; Wang Y; Wu J
    J Exp Bot; 2022 Nov; 73(19):6663-6677. PubMed ID: 35927220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of the G-box regulating factors protein family reveals its roles in response to
    Sun Q; Xi Y; Lu P; Lu Y; Wang Y; Wang Y
    Front Plant Sci; 2022; 13():986635. PubMed ID: 36035692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.