BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38746106)

  • 1. Heme allocation in eukaryotic cells relies on mitochondrial heme export through FLVCR1b to cytosolic GAPDH.
    Jayaram DT; Sivaram P; Biswas P; Dai Y; Sweeny EA; Stuehr DJ
    Res Sq; 2024 May; ():. PubMed ID: 38746106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing mitochondrial heme flow through GAPDH in living cells and its regulation by NO.
    Biswas P; Palazzo J; Schlanger S; Jayaram DT; Islam S; Page RC; Stuehr DJ
    Redox Biol; 2024 May; 71():103120. PubMed ID: 38507973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAPDH delivers heme to soluble guanylyl cyclase.
    Dai Y; Sweeny EA; Schlanger S; Ghosh A; Stuehr DJ
    J Biol Chem; 2020 Jun; 295(24):8145-8154. PubMed ID: 32358060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing Mitochondrial Heme Flow through GAPDH to Targets in Living Cells and its Regulation by NO.
    Biswas P; Palazzo J; Schlanger S; Jayaram DT; Islam S; Page RC; Stuehr DJ
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation.
    Chiabrando D; Marro S; Mercurio S; Giorgi C; Petrillo S; Vinchi F; Fiorito V; Fagoonee S; Camporeale A; Turco E; Merlo GR; Silengo L; Altruda F; Pinton P; Tolosano E
    J Clin Invest; 2012 Dec; 122(12):4569-79. PubMed ID: 23187127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals.
    Stuehr DJ; Dai Y; Biswas P; Sweeny EA; Ghosh A
    Biol Chem; 2022 Nov; 403(11-12):1005-1015. PubMed ID: 36152339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GAPDH is involved in the heme-maturation of myoglobin and hemoglobin.
    Tupta B; Stuehr E; Sumi MP; Sweeny EA; Smith B; Stuehr DJ; Ghosh A
    FASEB J; 2022 Feb; 36(2):e22099. PubMed ID: 34972240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial TANGO2 homologs are heme-trafficking proteins that facilitate biosynthesis of cytochromes
    Han S; Guo K; Wang W; Tao YJ; Gao H
    mBio; 2023 Aug; 14(4):e0132023. PubMed ID: 37462360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional maturation of cytochromes P450 3A4 and 2D6 relies on GAPDH- and Hsp90-Dependent heme allocation.
    Islam S; Jayaram DT; Biswas P; Stuehr DJ
    J Biol Chem; 2024 Feb; 300(2):105633. PubMed ID: 38199567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heme exporter Flvcr1 regulates expansion and differentiation of committed erythroid progenitors by controlling intracellular heme accumulation.
    Mercurio S; Petrillo S; Chiabrando D; Bassi ZI; Gays D; Camporeale A; Vacaru A; Miniscalco B; Valperga G; Silengo L; Altruda F; Baron MH; Santoro MM; Tolosano E
    Haematologica; 2015 Jun; 100(6):720-9. PubMed ID: 25795718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cycling with a unique Hsp90/Hsp70-dependent chaperone machinery and GAPDH is needed for heme insertion and activation of neuronal NO synthase.
    Morishima Y; Lau M; Pratt WB; Osawa Y
    J Biol Chem; 2023 Feb; 299(2):102856. PubMed ID: 36596358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells.
    Sweeny EA; Singh AB; Chakravarti R; Martinez-Guzman O; Saini A; Haque MM; Garee G; Dans PD; Hannibal L; Reddi AR; Stuehr DJ
    J Biol Chem; 2018 Sep; 293(37):14557-14568. PubMed ID: 30012884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels.
    Biswas P; Dai Y; Stuehr DJ
    Free Radic Biol Med; 2022 Feb; 180():179-190. PubMed ID: 35051612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase.
    Dai Y; Fleischhacker AS; Liu L; Fayad S; Gunawan AL; Stuehr DJ; Ragsdale SW
    Biol Chem; 2022 Nov; 403(11-12):1043-1053. PubMed ID: 36302634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GAPDH regulates cellular heme insertion into inducible nitric oxide synthase.
    Chakravarti R; Aulak KS; Fox PL; Stuehr DJ
    Proc Natl Acad Sci U S A; 2010 Oct; 107(42):18004-9. PubMed ID: 20921417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glyceraldehyde-3-phosphate dehydrogenase acts as a mitochondrial trans-S-nitrosylase in the heart.
    Kohr MJ; Murphy E; Steenbergen C
    PLoS One; 2014; 9(10):e111448. PubMed ID: 25347796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LmABCB3, an atypical mitochondrial ABC transporter essential for Leishmania major virulence, acts in heme and cytosolic iron/sulfur clusters biogenesis.
    Martínez-García M; Campos-Salinas J; Cabello-Donayre M; Pineda-Molina E; Gálvez FJ; Orrego LM; Sánchez-Cañete MP; Malagarie-Cazenave S; Koeller DM; Pérez-Victoria JM
    Parasit Vectors; 2016 Jan; 9():7. PubMed ID: 26728034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of heme metabolism in a cellular model of Diamond-Blackfan anemia.
    Mercurio S; Aspesi A; Silengo L; Altruda F; Dianzani I; Chiabrando D
    Eur J Haematol; 2016 Apr; 96(4):367-74. PubMed ID: 26058344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins.
    Lill R; Dutkiewicz R; Freibert SA; Heidenreich T; Mascarenhas J; Netz DJ; Paul VD; Pierik AJ; Richter N; Stümpfig M; Srinivasan V; Stehling O; Mühlenhoff U
    Eur J Cell Biol; 2015; 94(7-9):280-91. PubMed ID: 26099175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handling heme: The mechanisms underlying the movement of heme within and between cells.
    Donegan RK; Moore CM; Hanna DA; Reddi AR
    Free Radic Biol Med; 2019 Mar; 133():88-100. PubMed ID: 30092350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.