These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38746206)

  • 1. Design of High Affinity Binders to Convex Protein Target Sites.
    Yang W; Hicks DR; Ghosh A; Schwartze TA; Conventry B; Goreshnik I; Allen A; Halabiya SF; Kim CJ; Hinck CS; Lee DS; Bera AK; Li Z; Wang Y; Schlichthaerle T; Cao L; Huang B; Garrett S; Gerben SR; Rettie S; Heine P; Murray A; Edman N; Carter L; Stewart L; Almo S; Hinck AP; Baker D
    bioRxiv; 2024 May; ():. PubMed ID: 38746206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo design of diverse small molecule binders and sensors using Shape Complementary Pseudocycles.
    An L; Said M; Tran L; Majumder S; Goreshnik I; Lee GR; Juergens D; Dauparas J; Anishchenko I; Coventry B; Bera AK; Kang A; Levine PM; Alvarez V; Pillai A; Norn C; Feldman D; Zorine D; Hicks DR; Li X; Sanchez MG; Vafeados DK; Salveson PJ; Vorobieva AA; Baker D
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of protein-binding proteins from the target structure alone.
    Cao L; Coventry B; Goreshnik I; Huang B; Sheffler W; Park JS; Jude KM; Marković I; Kadam RU; Verschueren KHG; Verstraete K; Walsh STR; Bennett N; Phal A; Yang A; Kozodoy L; DeWitt M; Picton L; Miller L; Strauch EM; DeBouver ND; Pires A; Bera AK; Halabiya S; Hammerson B; Yang W; Bernard S; Stewart L; Wilson IA; Ruohola-Baker H; Schlessinger J; Lee S; Savvides SN; Garcia KC; Baker D
    Nature; 2022 May; 605(7910):551-560. PubMed ID: 35332283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational design of sequence-specific DNA-binding proteins.
    Glasscock CJ; Pecoraro R; McHugh R; Doyle LA; Chen W; Boivin O; Lonnquist B; Na E; Politanska Y; Haddox HK; Cox D; Norn C; Coventry B; Goreshnik I; Vafeados D; Lee GR; Gordan R; Stoddard BL; DiMaio F; Baker D
    bioRxiv; 2023 Sep; ():. PubMed ID: 37790440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders.
    Tlatli R; Nozach H; Collet G; Beau F; Vera L; Stura E; Dive V; Cuniasse P
    FEBS J; 2013 Jan; 280(1):139-59. PubMed ID: 23121732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.
    Cao L; Goreshnik I; Coventry B; Case JB; Miller L; Kozodoy L; Chen RE; Carter L; Walls L; Park YJ; Stewart L; Diamond M; Veesler D; Baker D
    bioRxiv; 2020 Aug; ():. PubMed ID: 32793905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-molecule binding and sensing with a designed protein family.
    Lee GR; Pellock SJ; Norn C; Tischer D; Dauparas J; Anischenko I; Mercer JAM; Kang A; Bera A; Nguyen H; Goreshnik I; Vafeados D; Roullier N; Han HL; Coventry B; Haddox HK; Liu DR; Yeh AH; Baker D
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961294
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Goudy OJ; Nallathambi A; Kinjo T; Randolph N; Kuhlman B
    bioRxiv; 2023 May; ():. PubMed ID: 37205527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational design of ligand-binding proteins with high affinity and selectivity.
    Tinberg CE; Khare SD; Dou J; Doyle L; Nelson JW; Schena A; Jankowski W; Kalodimos CG; Johnsson K; Stoddard BL; Baker D
    Nature; 2013 Sep; 501(7466):212-216. PubMed ID: 24005320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Binding Affinity and Selectivity of Computationally Designed Ligand-Binding Proteins Using Experiments.
    Tinberg CE; Khare SD
    Methods Mol Biol; 2016; 1414():155-71. PubMed ID: 27094290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design of protein interactions with learned surface fingerprints.
    Gainza P; Wehrle S; Van Hall-Beauvais A; Marchand A; Scheck A; Harteveld Z; Buckley S; Ni D; Tan S; Sverrisson F; Goverde C; Turelli P; Raclot C; Teslenko A; Pacesa M; Rosset S; Georgeon S; Marsden J; Petruzzella A; Liu K; Xu Z; Chai Y; Han P; Gao GF; Oricchio E; Fierz B; Trono D; Stahlberg H; Bronstein M; Correia BE
    Nature; 2023 May; 617(7959):176-184. PubMed ID: 37100904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes.
    Padhi AK; Kumar A; Haruna KI; Sato H; Tamura H; Nagatoishi S; Tsumoto K; Yamaguchi A; Iraha F; Takahashi M; Sakamoto K; Zhang KYJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of amyloidogenic peptide traps.
    Sahtoe DD; Andrzejewska EA; Han HL; Rennella E; Schneider MM; Meisl G; Ahlrichs M; Decarreau J; Nguyen H; Kang A; Levine P; Lamb M; Li X; Bera AK; Kay LE; Knowles TPJ; Baker D
    Nat Chem Biol; 2024 Mar; ():. PubMed ID: 38503834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tertiary motifs as building blocks for the design of protein-binding peptides.
    Swanson S; Sivaraman V; Grigoryan G; Keating AE
    Protein Sci; 2022 Jun; 31(6):e4322. PubMed ID: 35634780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico evolution of autoinhibitory domains for a PD-L1 antagonist using deep learning models.
    Goudy OJ; Nallathambi A; Kinjo T; Randolph NZ; Kuhlman B
    Proc Natl Acad Sci U S A; 2023 Dec; 120(49):e2307371120. PubMed ID: 38032933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion.
    Caldwell SJ; Haydon IC; Piperidou N; Huang PS; Bick MJ; Sjöström HS; Hilvert D; Baker D; Zeymer C
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30362-30369. PubMed ID: 33203677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.
    Cao L; Goreshnik I; Coventry B; Case JB; Miller L; Kozodoy L; Chen RE; Carter L; Walls AC; Park YJ; Strauch EM; Stewart L; Diamond MS; Veesler D; Baker D
    Science; 2020 Oct; 370(6515):426-431. PubMed ID: 32907861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational design of an epitope-specific Keap1 binding antibody using hotspot residues grafting and CDR loop swapping.
    Liu X; Taylor RD; Griffin L; Coker SF; Adams R; Ceska T; Shi J; Lawson AD; Baker T
    Sci Rep; 2017 Jan; 7():41306. PubMed ID: 28128368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational design and experimental optimization of protein binders with prospects for biomedical applications.
    Bonadio A; Shifman JM
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 34436606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display.
    Schilling J; Schöppe J; Plückthun A
    J Mol Biol; 2014 Feb; 426(3):691-721. PubMed ID: 24513107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.