These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 3874653)

  • 21. [Study of the mechanics and small-angle equatorial x-ray pattern of the frog skeletal muscle during transition and rigor at different temperatures].
    Savel'ev VB
    Biofizika; 1986; 31(6):1027-32. PubMed ID: 3492220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The first thin filament layer line decreases in intensity during an isometric contraction of frog skeletal muscle.
    Wakabayashi K; Saito H; Moriwaki N; Kobayashi T; Tanaka H
    Adv Exp Med Biol; 1993; 332():451-60. PubMed ID: 8109357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction.
    Kress M; Huxley HE; Faruqi AR; Hendrix J
    J Mol Biol; 1986 Apr; 188(3):325-42. PubMed ID: 3735425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved X-ray diffraction studies of myosin head movements in live frog sartorius muscle during isometric and isotonic contractions.
    Martin-Fernandez ML; Bordas J; Diakun G; Harries J; Lowy J; Mant GR; Svensson A; Towns-Andrews E
    J Muscle Res Cell Motil; 1994 Jun; 15(3):319-48. PubMed ID: 7857403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural features of cross-bridges in isometrically contracting skeletal muscle.
    Kraft T; Mattei T; Radocaj A; Piep B; Nocula C; Furch M; Brenner B
    Biophys J; 2002 May; 82(5):2536-47. PubMed ID: 11964242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in the X-ray diffraction pattern from rigor muscles by application of external length changes.
    Tanaka H; Wakabayashi K; Amemiya Y
    Adv Biophys; 1991; 27():105-14. PubMed ID: 1755354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intensification of the 5.9-nm actin layer line in contracting muscle.
    Matsubara I; Yagi N; Miura H; Ozeki M; Izumi T
    Nature; 1984 Nov 29-Dec 5; 312(5993):471-3. PubMed ID: 6334236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser-stimulated luminescence used to measure x-ray diffraction of a contracting striated muscle.
    Amemiya Y; Wakabayashi K; Tanaka H; Ueno Y; Miyahara J
    Science; 1987 Jul; 237(4811):164-8. PubMed ID: 3496662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle.
    Huxley HE; Stewart A; Sosa H; Irving T
    Biophys J; 1994 Dec; 67(6):2411-21. PubMed ID: 7696481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in the 5.9 nm actin layer-line on activation of frog skeletal muscles.
    Yagi N; Matsubara I
    Adv Exp Med Biol; 1988; 226():369-80. PubMed ID: 3261488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Movements of cross-bridges during and after slow length changes in active frog skeletal muscle.
    Matsubara I; Yagi N
    J Physiol; 1985 Apr; 361():151-63. PubMed ID: 3872939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic X-ray diffraction of skeletal muscle contraction: structural change of actin filaments.
    Wakabayashi K; Tanaka H; Saito H; Moriwaki N; Ueno Y; Amemiya Y
    Adv Biophys; 1991; 27():3-13. PubMed ID: 1755365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An x-ray diffraction study on early structural changes in skeletal muscle contraction.
    Yagi N
    Biophys J; 2003 Feb; 84(2 Pt 1):1093-102. PubMed ID: 12547790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-resolved synchrotron X-ray diffraction studies of a single frog skeletal muscle fiber. Time courses of intensity changes of the equatorial reflections and intracellular Ca2+ transients.
    Konishi M; Wakabayashi K; Kurihara S; Higuchi H; Onodera N; Umazume Y; Tanaka H; Hamanaka T; Amemiya Y
    Biophys Chem; 1991 Mar; 39(3):287-97. PubMed ID: 1863689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural changes of cross-bridges on transition from isometric to shortening state in frog skeletal muscle.
    Yagi N; Iwamoto H; Inoue K
    Biophys J; 2006 Dec; 91(11):4110-20. PubMed ID: 16980365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin.
    Linari M; Dobbie I; Reconditi M; Koubassova N; Irving M; Piazzesi G; Lombardi V
    Biophys J; 1998 May; 74(5):2459-73. PubMed ID: 9591672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cause of changes in the thin filament-associated reflexions on activation of frog muscle--myosin binding or conformational change of actin.
    MaƩda Y; Popp D; McLaughlin SM
    Adv Exp Med Biol; 1988; 226():381-90. PubMed ID: 3407521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crossbridge states in isometrically contracting fish muscle: evidence for swinging of myosin heads on actin.
    Harford JJ; Chew MW; Squire JM; Towns-Andrews E
    Adv Biophys; 1991; 27():45-61. PubMed ID: 1755367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-resolved X-ray diffraction studies on the effect of slow length changes on tetanized frog skeletal muscle.
    Amemiya Y; Iwamoto H; Kobayashi T; Sugi H; Tanaka H; Wakabayashi K
    J Physiol; 1988 Dec; 407():231-41. PubMed ID: 3267188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural changes of actin-bound myosin heads after a quick length change in frog skeletal muscle.
    Yagi N; Iwamoto H; Wakayama J; Inoue K
    Biophys J; 2005 Aug; 89(2):1150-64. PubMed ID: 15894638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.